100m with a constant speed 200km/hr the pilot drops abomb from the plane. determine (neplect air resistance of friction) X Q​

Answers

Answer 1

The horizontal distance XQ traveled by the bomb is 250 m.

Distance X Q

Let the XQ be the horizontal distance traveled by the bomb.

Time for the bomb to drop from 100 m

h = vt + ¹/₂gt

Let the vertical velocity = 0

h = 0 + ¹/₂gt²

h = ¹/₂gt²

2h = gt²

t² = 2h/g

t = √(2h/g)

t = √(2 x 100 / 9.8)

t = 4.5 s

Horizontal distance traveled by the bomb

XQ = vx(t)

where;

vx is horizontal speed, = 200 km/hr = 55.56 m/s

XQ = 55.56 x 4.5

XQ = 250 m

Thus, the horizontal distance XQ traveled by the bomb is 250 m.

Learn more about horizontal distance here: https://brainly.com/question/24784992

#SPJ1


Related Questions

Planet-X has a mass of 4.74×1024 kg and a radius of 5870 km.
1. What is the Second Cosmic Speed i.e. the minimum speed required for a satellite in order to break free permanently from the planet?
2. If the period of rotation of the planet is 16.6 hours, then what is the radius of the synchronous orbit of a satellite?

Answers

The minimum speed required for a satellite in order to break free permanently from the planet and the radius of the synchronous orbit of a satellite are 7.3 Km/s and 3.1 × 10⁴ km respectively.

To find the answer, we need to know about the escape velocity and time period of revolving satellite.

What's the expression of escape velocity of a satellite?Mathematically, escape velocity= √(2GM/R)G = gravitational constant, M = mass of planet, R= radius of the planetHere, M = 4.74×10²⁴kg, R = 5870 kmEscape velocity=  √(6.67×10^(-11)×4.74×10²⁴/5.870×10⁶)

          = 7.3 Km/s

What's the expression of time period of a circularly orbiting satellite?T= {2π×r^(3/2)}/√(GM)r= (T/2π)⅔× (GM)^(1/3)r is the radius of the orbitWhat's the radius of the circular orbit, if the time period of the satellite is 16.6 hours?T = 16.6 hours = 16.6×3600 second = 59760sr = (59760/2π)^⅔× (6.67×10^(-11)×4.74×10²⁴)^(1/3)

        = 3.1 × 10⁴ km

Thus, we can conclude that the escape velocity and the radius of the synchronous orbit of a satellite are 7.3 Km/s and 3.1 × 10⁴ km respectively.

Learn more about the escape velocity here:

brainly.com/question/8057108

#SPJ4

The small spherical planet called "Glob" has a mass of 7.88×10^18 kg and a radius of 6.32×10^4 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×10^3 m, above the surface of the planet, before it falls back down.
1. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10^-11 Nm2/kg2.)
2. A 36.0 kg satellite is in a circular orbit with a radius of 1.45×10^5 m around the planet Glob. Calculate the speed of the satellite.

Answers

(a) The initial speed of the rock as it left the astronaut's hand is 19.35 m/s.

(b) The speed of the satellite is 50.24 m/s.

Acceleration due to gravity of the planet

g = GM/R²

where;

M is mass of the planetR is radius of the planet

g = (6.67 x 10⁻¹¹ x 7.88 x 10¹⁸)/(63200)²

g = 0.13 m/s²

Initial speed of the rock

v² = u² - 2gh

where;

v is final velocityu is initial velocity

at maximum height, v = 0

u² = 2gh

u = √2gh

u = √(2 x 0.13 x 1,440)

u = 19.35 m/s

Speed of the satellite

v = √GM/r

M is mass of the planet Globr is the total distance from the center of the planet Glob

r = radius of planet Glob + radius of the satellite

r = 63200 m + 145,000 m = 208,200 m

v = √[(6.67 x 10⁻¹¹ x 7.88 x 10¹⁸)/(208,200)]

v = 50.24 m/s

Thus, the initial speed of the rock as it left the astronaut's hand is 19.35 m/s.

The speed of the satellite is 50.24 m/s.

Learn more about speed of satellite here: https://brainly.com/question/22247460

#SPJ1

A circular loop of wire with radius 0.0410 m and resistance 0.169 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.78 T and is decreasing at a rate of -0.605 T/s.
a) Is the induced current in the loop clockwise or counterclockwise?
b) What is the rate at which electrical energy is being dissipated by the resistance of the loop?

Answers

(a) The induced current in the loop will be counterclockwise.

(b) The rate at which electrical energy is being dissipated by the resistance of the loop is 0.012 W.

Direction of the current

The induced current in the loop will be counterclockwise to the direction of magnetic field.

Emf induced in the loop

emf = -NdФ/dt

emf = -NBA/dt

where;

A is area of the loop

A = πr² = π(0.041)² = 5.28 x 10⁻³ m²

emf = -(-0.605 - 7.78) x 5.28 x 10⁻³

emf = 8.385 x 5.28 x 10⁻³

emf = 0.0442 V

Rate of energy dissipation

P = emf²/R

P = (0.0442)²/0.169

P = 0.012 W

Thus, the rate at which electrical energy is being dissipated by the resistance of the loop is 0.012 W.

Learn more about power dissipation here: https://brainly.com/question/15015986

#SPJ1

A block with a mass of 33.0 kg is pushed with a horizontal force of 150 N. The block moves at a constant speed across a level, rough surface a distance of 4.95 m.

(a) What is the work done (in J) by the 150 N force?

_________J

(b) What is the coefficient of kinetic friction between the block and the surface?
________

Answers

The work done is given by 742.5 J while the coefficient of kinetic friction between the block and the surface is 0.46.

What is the work done?

The work done is given by the use of the formula;

W = F * x

Where;

F = force applied

x = distance covered

W = 150 N *  4.95 m = 742.5 J

Now;

The coefficient of kinetic friction is given by;

μ = F/mg

μ = 150/ 33 * 9.8

μ = 0.46

Learn more about work done:https://brainly.com/question/13662169

#SPJ1

Why is air resistance friction not useful for an airplane?
A. Causes turbulence
B. Speeds it up
C. Slows it down
D. Creates heat

Answers

The correct option is C.   Air resistance friction is not useful for an airplane because it slows it down.

What is air resistance?

Air resistance is the opposition to motion of an object caused by air flow.

High air resistance may cause turbulence during the motion of an air plane. This can lead to engine failure or some mishap during flight.

Air resistance is also a type of friction between air and another material such as airplane.

Effect of air resistance on airplane

Friction between the air and the plane slows the airplane down. This is known as air resistance, or drag.

The faster an object travels through the air, the more it has to fight against drag.

Thus, air resistance friction is not useful for an airplane because it slows it down.

Learn more about air resistance here: https://brainly.com/question/1385438

#SPJ1

Find the speed of a satellite in a circular orbit around the Earth with a radius 3.57 times the mean radius of the Earth. (Radius of Earth = 6.37×103 km, mass of Earth = 5.98×1024 kg, G = 6.67×10-11 Nm2/kg2.)

Answers

The speed of a satellite in a circular orbit around the Earth is 4,188 m/s.

Speed of the satellite

The speed of the satellite is calculated as follows;

v = √GM/r

where;

M is mass of Earthr is radius of satellite

v = √[(6.67 x 10⁻¹¹ x 5.98 x 10²⁴) / (3.57 x 6.37 x 10⁶)]

v = 4,188 m/s

Thus, the speed of a satellite in a circular orbit around the Earth is 4,188 m/s.

Learn more about speed of satellite here: https://brainly.com/question/25721729

#SPJ1

A car is being tested on a track. The driver approaches the test section at a speed of 28 m s−1. He then accelerates at a uniform rate between two markers separated by 100 m. The car reaches a speed of 41 m s−1.

Answers

The uniform acceleration of the car is 4.485 m/s².

Acceleration of the car

The uniform acceleration of the car is calculated as follows;

v² = u² + 2as

a = (v² - u²)/2s

where;

v is final velocity = 41 m/su is initial velocity = 28 m/ss is distance = 100 ma is acceleration = ?

a = (41² - 28²)/(2 x 100)

a = 4.485 m/s²

Thus, the uniform acceleration of the car is 4.485 m/s².

Learn more about uniform acceleration here: https://brainly.com/question/2505743

#SPJ1

A 29.0 kg beam is attached to a wall with a hi.nge while its far end is supported by a cable such that the beam is horizontal.
If the angle between the beam and the cable is θ = 57.0° what is the vertical component of the force exerted by the hi.nge on the beam?

Answers

The vertical component of the force being applied to the beam by the high-tension cable is 36.37 N.

Calculation of the cable's tension-

Utilizing the moment principle, determine the cable's tension:

Torque clockwise = TL sin∅

Counterclockwise torque = 1/2WL

TL sin∅ = 1/2WL

⇒T sin∅ = 1/2W

⇒T = W/2sin∅

⇒T = (29* 9.8)/ (2*sin57)

⇒T = 169.43 N

Calculation of the vertical component of the force-

Forces that operate perpendicular to the surface vertical plane are called the vertical force. Gravity always pulls objects straight down to the earth's core.

T+F = W

⇒F = W-T

⇒F = (21*9.8)-169.43

F = 36.37 N

So, the force on the beam has a vertical component of 36.37 N.

Learn more about the force here:

https://brainly.com/question/13191643

#SPJ1

A tennis player tosses a tennis ball straight up and then catches it after 1.77 s at the same height as the point of release.

(a) What is the acceleration of the ball while it is in flight?
magnitude ______ m/s2
Which direction?
1. Upward
2. Downward
3. The magnitude is zero

(b) What is the velocity of the ball when it reaches its maximum height?
magnitude _______________ m/s
Which direction?
1. Upward
2. Downward
3. The magnitude is zero


(c) Find the initial velocity of the ball.

______m/s upward

(d) Find the maximum height it reaches.
___________m

Answers

(a) The  acceleration of the ball while it is in flight has a magnitude of 9.81 m/s2 in downward direction.

(b) The velocity of the ball when it reaches its maximum height is zero.

(c) The initial velocity of the ball is 17.36 m/s.

(d) The maximum height it reaches is 15.36 m.

Acceleration of the ball

The acceleration of the ball while it is in flight has a magnitude of 9.81 m/s2 in downward direction.

Velocity of the ball at maximum height

The velocity of the ball decreases as the ball moves upwards and eventually becomes zero at maximum height.

Initial velocity of the ball

v = u - gt

at maximum height, final velocity, v = 0

0 = u - gt

u = gt

u = 9.81 x 1.77

u = 17.36 m/s

Maximum height reached by the projectile

h = ut - ¹/₂gt

h = 17.36(1.77) - ¹/₂(9.81)(1.77²)

h = 15.36 m

Thus, the  acceleration of the ball while it is in flight has a magnitude of 9.81 m/s2 in downward direction.

The velocity of the ball when it reaches its maximum height is zero.

The initial velocity of the ball is 17.36 m/s.

The maximum height it reaches is 15.36 m.

Learn more about maximum height here: https://brainly.com/question/12446886

#SPJ1

Two long, straight, parallel wires, 10.0 cm apart carry equal 4.00-A currents in the same direction, as shown in (Figure 1).
a) Find the magnitude of the magnetic field at point P1 , midway between the wires.
b) What is its direction?
c) Find the magnitude of the magnetic field at point P2 , 25.0 cm to the right of P1 .
d) What is its direction?
e) Find the magnitude of the magnetic field at point P3 , 20.0 cm directly above P1 .
f) What is its direction?

Answers

(a) The magnitude of the magnetic field at point P1 , midway between the wires is  1.005 x 10⁻⁴ T and the direction will be out of the page.

(b) The magnitude of the magnetic field at point P2 , 25.0 cm to the right of P1 is 2.67 x 10⁻⁶ T and the direction is into the page.

(c) The magnitude of the magnetic field at point P3 , 20.0 cm directly above P1  is 3.88 x 10⁻⁶ T and the direction is downwards.

Magnetic field midway between the wires

B = μ/2π[I₁/0.5r + I₂/0.5r]

B = (μ/2π) x (I/0.5r + I/0.5r)

B = (μ/2π) x (2I/0.5r)

B = μI/0.5r

B = 2μI/r

where;

I is current in the wiresr is the distance between the wires

B = (2 x 4π x 10⁻⁷ x 4)/(0.1)

B = 1.005 x 10⁻⁴ T

The direction of the magnetic field is out of the page.

Magnetic field at 25 cm right of P1

B = μI/2πd

d = 5 cm + 25 cm = 30 cm

B =  (4π x 10⁻⁷ x 4)/(2π x 0.3)

B = 2.67 x 10⁻⁶ T

The direction of the magnetic field is into the page towards P1.

Magnetic field at 20 above P1

B = μI/2πd

d = √(20² + 5²)

d = 20.62 cm

B =  (4π x 10⁻⁷ x 4)/(2π x 0.2062)

B = 3.88 x 10⁻⁶ T

The direction of the magnetic field is downwards towards P1.

Thus, the magnitude of the magnetic field at point P1 , midway between the wires is  1.005 x 10⁻⁴ T and the direction will be out of the page.

The magnitude of the magnetic field at point P2 , 25.0 cm to the right of P1 is 2.67 x 10⁻⁶ T and the direction is into the page.

The magnitude of the magnetic field at point P3 , 20.0 cm directly above P1  is 3.88 x 10⁻⁶ T and the direction is downwards.

Learn more about magnetic field here: https://brainly.com/question/7802337

#SPJ1

D. A bargain hunter purchases a "gold" crown at a flea market. After she gets home, she hangs it from a scale and finds its weight to be 7.84 N. She then weighs the crown while it is immersed in water, and now the scale reads 6.86 N. Is the crown made of pure gold? Find the density of the crown and compare it to the it to density of the gold. ​

Answers

Answer:

Wc = 7.84    weight of crown

Ww = 7.84 - 6.86 = .98       weight of water displaced

Density = 7.84 / .98 = 8     crown is 8 X that of water

Since gold has a density of 19.3 that of water the crown is certainly not 100 percent (if any) gold  

Two planets X and Y travel counterclockwise in circular orbits about a star, as seen in the figure.
The radii of their orbits are in the ratio 4:3. At some time, they are aligned, as seen in (a), making a straight line with the star. Five years later, planet X has rotated through 88.0°, as seen in (b). By what angle has planet Y rotated through during this time?

Answers

According to mathematics, the planet's angle is stated as

dY=704 degrees.

What is the current rotational angle of planet Y?

We may demonstrate this by using Kepler's third law, which asserts that a planet's orbit squared is a function of cubed radius.

The equation for the period is often expressed numerically as

[tex](periodX / periodY)^2 = (radius X / radius Y)^3[/tex]

Therefore

(pX / pY)^2 = 4^3

(pX / pY)^2 = 64

[tex]\sqrt{(pX / pY )^2}= \sqrt{64}[/tex]

pX / pY=8

In conclusion, planet Y travels 8 times further than planet X does in the same amount of time since one orbit on planet X takes 8 times longer to complete.

planet Y travels ;

dY=8 * 88.0

dY= 704 degrees

Read more about Kepler's third rule

at brainly.com/question/1086445

#SPJ1

A man pushing a crate of mass

m = 92.0 kg

at a speed of

v = 0.845 m/s

encounters a rough horizontal surface of length

ℓ = 0.65 m

as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.351 and he exerts a constant horizontal force of 280 N on the crate.



(a) Find the magnitude and direction of the net force on the crate while it is on the rough surface.

magnitude_____N

What is the direction?

1. Opposite as the motion of the crate

2. Same as the motion of the crate



(b) Find the net work done on the crate while it is on the rough surface.

______J


(c) Find the speed of the crate when it reaches the end of the rough surface.

_______m/s

Answers

(a) The magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.

(b) The net work done on the crate while it is on the rough surface is 23.7 J.

(c) The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.

Magnitude of net force on the crate

F(net) = F - μFf

F(net) = 280 - 0.351(92 x 9.8)

F(net) = -36.46 N

Net work done on the crate

W = F(net) x L

W = -36.46 x 0.65

W = - 23.7 J

Acceleration of the crate

a = F(net)/m

a = -36.46/92

a = - 0.396 m/s²

Speed of the crate

v² = u² + 2as

v² = 0.845² + 2(-0.396)(0.65)

v² = 0.199

v = √0.199

v = 0.45 m/s

Thus, the magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.

The net work done on the crate while it is on the rough surface is 23.7 J.

The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.

Learn more about work done here: https://brainly.com/question/8119756

#SPJ1

A jet of water squirts out horizontally from a hole near the bottom of the tank, as seen in the figure.
If the hole has a diameter of 3.13 mm, what is the height, h, of the water level in the tank? Assume that x = 1.33 m and y = 1.72 m.

Answers

The height, h, of the water level in the tank is  mathematically given as

h=1.3675

What is the height, h, of the water level in the tank?

Generally, the equation for kinematics is  mathematically given as

S=v_o t+(1/2)at^2

Therefore

y=0+(1/2)gt^2

Where

t=(2y/g)^{1/2}

t=(2*1.72/9.8)^{1/2}

t=0.5925s

The horizontal exit velocity will be given as

[tex]Vx=x/t[/tex]

Therefore

[tex]Vx=\frac{0.3.13}{0.5925}[/tex]

Vx=0.5283

In conclusion, applying Bernoulli's Law the tank bottom and tank surface

P+(1/2)pv0^2+pgh=P+(1/2)pvx^2+pgh

(1/2)(p)(0m/s)^2+pgh=(1/2)pvx^2+pg(0m)

gh=(1/2)vx^2

h=(0.5283m/s)^2/(2)(9.8)

h=1.3675

Read more about the height

https://brainly.com/question/10726356

#SPJ1

Derive the following equations of motion
1. v = at
2. s = ut + at²
3. v² = u² + 2as​

Answers

according to definition of acceleration

a=v-u/t

t=v-u/a(equation 1)

according to the formula of average velocity

v+u/2*s/t

s=v+u/2*t(equation 2)

now putting the value of t in equation 2

s=v+u/2*v-u/a

s=v^2-u^2/2a

v^2=u^2+2as

please make me brainlist

1. Is the image projected on a movie screen real or virtual? What about the image of yourself seen in a bathroom mirror?


2. Hold a shiny spoon in front of you. What differences do you notice about the image of your face seen in the convex and concave sides?


3. Where are the images formed by each side of the spoon? In front or behind the spoon? (Try the parallax method. Look at the image of an overhead light. Hold the tip of a pencil where you think the image is. Move your head from side to side. If the image and pencil tip appear to move relative to each other, adjust the position of the pencil back and forth until they appear as one)

Answers

Answer: 1. The movie one is virtual and the bathroom mirror is real

2. The image is distorted in a way

3. Behind the spoon

Explanation:

The movie one is virtual and the bathroom mirror is real and The image is distorted in a way and Behind the spoon.

What is virtual screen?

In virtual desktops, the desktop environment is segregated from the physical device being used to access it. They are preloaded images of operating systems and apps. Over a network, users can remotely view their virtual desktops.

A virtual desktop can be accessed from any endpoint device, including a laptop, smartphone, or tablet. The user interacts with the client software that was installed on the endpoint device by the virtual desktop provider.

A virtual desktop mimics the appearance and feel of a real workstation. Because robust resources, like storage and back-end databases, are easily accessible, the user experience is frequently even better than that of a physical workstation.

Therefore, The movie one is virtual and the bathroom mirror is real and The image is distorted in a way and Behind the spoon.

To learn more about virtual screen, refer to the link:

https://brainly.com/question/1512091

#SPJ2

The figure below shows a motorcycle leaving the end of a ramp with a speed of 39.0 m/s and following the curved path shown. At the peak of the path, a maximum height h above the top of the ramp, the motorcycle's speed is 37.1 m/s. What is the maximum height h? Ignore friction and air resistance. (Enter your answer in m.)

_____m

Answers

The maximum height h of the curved path is 7.38 m.

Maximum height of the curved path

Apply the following kinematic equation;

v² = u² - 2gh

where;

v is the final velocity of the motorcycleu is initial velocity of the motorcycleh is the maximum height

(u² - v²)/2g = h

(39² - 37.1²)/(2 x 9.8) = h

7.38 m = h

Thus, the maximum height h of the curved path is 7.38 m.

Learn more about maximum height here: https://brainly.com/question/12446886

#SPJ1

Planet-X has a mass of 4.74×1024 kg and a radius of 5870 km.
1. What is the First Cosmic Speed i.e. the speed of a satellite on a low lying circular orbit around this planet? (Planet-X doesn't have any atmosphere.)
2. What is the Second Cosmic Speed i.e. the minimum speed required for a satellite in order to break free permanently from the planet?
3. If the period of rotation of the planet is 16.6 hours, then what is the radius of the synchronous orbit of a satellite?

Answers

Solutions for the three problems are is mathematically given as

v=7338.9349[tex]V=14677.86986 \mathrm{~m} / \mathrm{s}[/tex][tex]&r=30581248.06 \times 10^{4} \mathrm{~m} / \mathrm{s}[/tex]

What is the First Cosmic Speed i.e. the speed of a satellite on a low-lying circular orbit around this planet?

(a) First cosmic speed (arbitral velocily)

[tex]v=\sqrt{\frac{G M}{r}}\\v=\sqrt{\frac{6.67 \times 10^{-11} \times 4.74 \times 10^{24}}{5870 \times 10^{3}}}[/tex]

v=7338.9349

(b) Second cosmic speed (escape velo.)

$$

\begin{gathered}

[tex]V=\sqrt{\frac{2 G M}{r}}\\\\V=\sqrt{2} \sqrt{\frac{G M}{r}}\\\\=V\sqrt{2} \times 7338.9349 \\[/tex]

[tex]V=14677.86986 \mathrm{~m} / \mathrm{s}[/tex]

(c) In conclusion, in a circular orbit, the gravitational force is gets balanced by centripetal force

[tex]&m_{q \omega \omega^{2}}=\frac{G M M}{r^{2}} \\&r^{3}=\frac{G M}{\omega^{2}}=\frac{G M}{4 \pi^{2}} T^{2} \\&r^{3}=\frac{6.67 \times 10^{-11} \times 4.74 \times 10^{24} \times(16.6 \times 3600)^{7}}{4 \pi^{2}} \\[/tex]

[tex]&r=30581248.06 \times 10^{4} \mathrm{~m} / \mathrm{s}[/tex]

Read more about gravitational force

https://brainly.com/question/12528243

#SPJ1

An object of height 5 cm is kept in front of a
lens. An inverted image of height 5 is formed. identity the lens and position of the
object and image.

Answers

Answer:

The type of lens involved is a convex lens and the object is positioned at the center of the curvature of the convex lens.

According to the question, a real, inverted, and same-sized image of the object is formed.

A concave lens is a diverging lens and always forms virtual images. But convex lenses are converging lenses and are the only type of lens that produce real and inverted images of the corresponding objects.

When an object is placed at the center of the curvature of a convex lens, its corresponding image is formed on the opposite side of the convex lens. The image formed is real and inverted.

The distance of the image from the lens is equal to the distance of the object from the lens.

For a convex lens, the distance of the center of curvature from the lens is double the focal length of the lens.

That's why the convex lens and center of curvature are the correct answer to this question.

Explanation:

A yellow train of mass 100 kg is moving at 8 m/s toward an orange train of mass 200 kg traveling in the opposite direction on the same track at a speed of 1 m/s. What is the initial momentum of the yellow and orange trains combined?
A. 200 kgm/s
B. 1000 kgm/s
C. 800 kgm/s
D. 600 kgm/s

Answers

The initial momentum of the yellow and the orange train is 1000kgm/s.

Momentum is the product of the mass and velocity of any object.

Momentum is denoted by P.

Momentum P = mv , where m = mass and v = velocity.

Given:

Mass of the orange train = 200kg

Velocity of the orange train = 1m/s

So, the momentum of the orange train will be,

                            ∴    P = mv

                                  P = 200 x 1

                                  P = 200 kgm/s

∴   The initial momentum of the orange train is 200kgm/s.

Mass of the yellow train = 100kg

Velocity of the yellow train = 8m/s

So, the momentum of the yellow train will be,

                            ∴    P = mv

                                  P = 100 x 8

                                  P = 800 kgm/s

∴ The initial momentum of the yellow train is 800kgm/s.

Therefore, the initial momentum of the yellow and the orange train is 1000kgm/s.

Learn more about momentum here:

https://brainly.com/question/25849204

#SPJ1

A step down transformer with an input voltage of 220V decreases the voltage to half of the input .There is a current flowing of 15A in the primary coil. Find the output current

Answers

The output current for the given step down transformer is 30A.

What is the step down transformer?

A step down transformer is a passive device that converts high voltage power to low voltage power, while the output current is higher than the  input current. They are used in power adaptors and rectifiers to decrease the voltage to the desired level. It works according to Faraday's law of Electromagnetic induction.

The current in the windings of a step down transformer is inversely proportional to the voltage in windings as:

Input voltage / Output voltage = Output current / Input current

220 / 110 = Outout current / 15

Output current = 30A

Hence, the output current (30A) obtained is higher than the given input current (15A).

Learn more about step down transformer here:

https://brainly.com/question/14929231

#SPJ1

describe one similarity and one difference between the velocity on the reference circle and the velocity on the pendulum

Answers

SHM can be acquired by perpendicular projection of uniform circular motion of a particle on its diameter such a particle is called reference particle and its circular path is called reference circle.

A pendulum reaches its maximum velocity when the block is at its lowest point (the pendulum is vertical and pointing straight down). We can then use the term for conservation of energy to determine the maximum height of the block.

What is the velocity at the bottom of a pendulum?

As the pendulum swings downward, gravity converts this potential energy into kinetic energy, so that at the bottom of the swing, the pendulum bob has zero potential energy, and its kinetic power, (1/2)mv2, equals the initial potential energy (mgh). (So the velocity, v, equals √(2gh).)

To learn more about pendulum, refer

https://brainly.com/question/26449711

#SPJ9

Find the speed of a satellite in a circular orbit around the Earth with a radius 3.57 times the mean radius of the Earth. (Radius of Earth = 6.37×10^3 km, mass of Earth = 5.98×10^24 kg, G = 6.67×10^-11 Nm^2/kg^2.)

Answers

Answer: The speed of a satellite in a circular orbit around the Earth with a radius 3.57 times the mean radius of the Earth is 4188.11 m/s.

Explanation: To find the answer, we need to know about the equation of motion of a satellite around earth.

What is the equation of motion of a satellite around earth?We have gravitational force of attraction between the satellite of mass m and earth of mass M as,

                 [tex]F_g=\frac{GMm}{r^2}[/tex]

The expression for centripetal force of,

                 [tex]F_c=\frac{mv^2}{r} \\[/tex]

These two forces are equal for a satellite around earth.

                    [tex]\frac{GMm}{r^2} =\frac{mv^2}{r} \\thus,\\v=\sqrt{\frac{GM}{r} }[/tex]

How to solve the problem?Given that,

                  [tex]r=3.57 R_E=3.57*6.37*10^3=22.74*10^3 km\\M=5.98*10^24kg\\G=6.67*10^{-11}Nm^2/kg^2[/tex]

Thus, the speed of the satellite will be,

                  [tex]v=\sqrt{\frac{6.67*10^{-11}*5.98*10^{24}}{22.74*10^6m} } =4188.11 m/s[/tex]

Thus, we can conclude that the speed of satellite will be 4188.11 m/s.

Learn more about motion of satellites here:

https://brainly.com/question/28105737

#SPJ4

In a circular orbit with a radius that is 3.57 times the mean radius of the Earth, a satellite moves at a speed of 132.43km/s.

In order to get the solution, we must understand the satellite's planetary motion equation.

What is the satellite's orbital motion equation?The earth's mass M and the satellite's mass M are attracted to one another by gravity.

                          [tex]F_g=\frac{GMm}{r^2}[/tex]

The term used to describe centripetal force of,

                         [tex]F_c=\frac{MV^2}{r}[/tex]

When a satellite orbits the earth, these two forces are equivalent. Thus, the velocity will be,

                          [tex]\frac{GMm}{r^2}=\frac{mV^2}{r}\\V=\sqrt{\frac{GM}{r} } =\sqrt{\frac{6.67*10{-11}*5.98*10^{24}}{22.74*10^3} } \\V=132.43*10^3m/s[/tex]

As a result, we may estimate that the satellite will move at a speed of 132.43 km/s.

Learn more about satellite motion here:

https://brainly.com/question/28105737

#SPJ1

What affects fuel consumption in automobiles?
A. Drag
B. Nothing
C. Air resistance
D. Time of day

Answers

Answer:

A and C

Explanation:

drag (the area of lower air pressure behind the car when moving) and mostly air resistance (the work to push the air in front of us away to move through - the faster we go, the stronger the air resists to move aside).

an 8 kilogram ball is fired horizontally form a 1 times 10^3 kilogram cannon initially at rest after having been fired the momentum of the ball is 2.4 time 10^3 kilogram meters per second east calculate the magnitude of the cannons velocity after the ball is fired

Answers

The magnitude of the cannons velocity after the ball is fired will be 2.4m/s.

To find the answer, we have to know more about the law of conservation of linear momentum.

How to find the magnitude of the cannons velocity after the ball is fired?The law of conservation of linear momentum states that, the initial momentum of a system will be equal to the final momentum.Here, then initial momentum of the system will be equal to zero, since the initial velocity of the cannon is equal to zero.Given that,

                      [tex]M_B=8kg\\M_C=1*10^3 kg\\P_f=2.4*10^3 kgm/s.\\[/tex]

When the ball is fired from the canon, then the cannon will have a recoil velocity in the opposite direction of motion of the ball.Since it has a final momentum towards east, the recoil momentum will be in the west.Thus, the velocity of the cannon after when the ball is fired will be,

                   [tex]P_f=M_CV_C\\V_C=\frac{P_f}{M_C}=\frac{2.4*10^3}{1*10^3} =2.4m/s \\west[/tex]

Thus, we can conclude that, the magnitude of the cannons velocity after the ball is fired is 2.4m/s.

Learn more about the law of conservation of linear momentum here:

https://brainly.com/question/28106285

#SPJ1

After the ball is shot, the cannon will move at a speed of 2.4 m/s.

We must learn more about the rule of conservation of linear momentum in order to locate the solution.

How can I determine the cannon's post-ball velocity magnitude?

According to the law of conservation of linear momentum, a system's starting and ultimate velocities are equal.Since the cannon's initial velocity is 0 in this case, the system's initial momentum will be equal to zero as well.We have,

                          [tex]m=8kg\\M=1000kg\\P_f=2.4*10^3kgm/s[/tex]

When a cannon fires a ball, the cannon will recoil quickly and in the opposite direction of the ball's motion.Given that it is now moving eastward, the recoil momentum is towards the west.As a result, when the ball is fired, the cannon's velocity will be,

                               [tex]P_f=MV\\V=\frac{P_f}{M} =2.4m/s[/tex]

Thus, we can infer that the cannon's maximum speed once the ball is fired is 2.4 m/s.

Learn more about the conservation of linear momentum here:

https://brainly.com/question/22698801

#SPJ1

please help me with this physics question ASAP​

Answers

Answer:

See below

Explanation:

With switches open, the circuit is a simple series circuit ....the ammeters will have the same readings

V = IR

I = V/R = 5 / (10+5+5) = .25 A

b) With S1 closed   5 ohm and 10 ohm in parallel become = 5 *10 / (5+10) = 3.33 ohm

 then the series circuit current becomes  

     5 v / ( 10 + 3.33 + 5 ) = ammeter 1 = .273 amps

            ammeter 2 will get a portion of this ...the smaller resistor will get 2/3 ...the 10 ohm resistor will get 1/3        .273 *   10 / 15 =.182 amps

Part B
A roller coaster ride starts with the roller coaster car being pulled to the top of the first hill with pulley system. The car is
released from the top with an initial velocity close to zero, then accelerates downward. From that first hill, the roller coaster just
coasts; there is no driving force, other than gravity, to keep It going. Assuming no friction, what can you say about the height of
the other hills in the roller coaster ride?

Answers

The highest point of a roller coaster is almost always the first hill. In the majority of roller coasters, the hills get smaller as the train travels down the track.

To find the answer, we have to know more about the mechanical energy of a system.

How to find the answer?Since it influences the mechanical energy of the system, the first hill must be the highest.One of the fundamental tenets of physics is that, in the absence of friction, mechanical energy must be conserved. Mechanical energy is the product of kinetic energy and potential energy.When the vehicles ascend the first hill on the roller coaster, mechanical energy is provided to the system because the speed is zero at this point.

                  Mechanical energy = U = mgh

Where m represents the car mass, g represents gravity, and h represents height

If the system is to continue moving, the other hills on the mountain must be lower than the first hill. When the vehicles are released, this energy is converted into kinetic and potential energy when it lowers and ascends, but the sum of these two cannot be larger than the starting energy.

Finally, by applying the principle of energy conservation, we may determine that, the initial hill must be the highest.

Learn more about the mechanical energy here:

https://brainly.com/question/1674514

#SPJ1

*Look at attachment for photo of object**

An object, whose mass is 0.520 kg, is attached to a spring with a force constant of 106 N/m. The object rests upon a frictionless, horizontal surface (shown in the figure below).

The object is pulled to the right a distance A = 0.150 m from its equilibrium position (the vertical dashed line) and held motionless. The object is then released from rest.

(a) At the instant of release, what is the magnitude of the spring force (in N) acting upon the object?
__________ N

(b) At that very instant, what is the magnitude of the object's acceleration (in m/s2)?
________ m/s2


(c)
In what direction does the acceleration vector point at the instant of release?
- The direction is not defined (i.e., the acceleration is zero).
- Toward the equilibrium position (i.e., to the left in the figure).
- Away from the equilibrium position (i.e., to the right in the figure).
- You cannot tell without more information.

Answers

A. The magnitude of the spring force (in N) acting upon the object is 15.9 N

B. The magnitude of the object's acceleration (in m/s²) is 30.58 m/s²

C. The direction of the acceleration vector points toward the equilibrium position (i.e., to the left in the figure).

A. How to determine the force Extension (e) = 0.150 mSpring constant (K) = 106 N/mForce (F) = ?

F = Ke

F = 106 × 0.15

F = 15.9 N

B. How to determine the accelerationMass (m) = 0.52 KgForce (F) = 15. 9 NAcceleration (a) =?

F = ma

Divide both sides by m

a = F / m

a = 15.9 / 0.52

a = 30.58 m/s²

C. How to determine the direction of the acceleration vector

Considering the diagram, we can see that the spring was pulled away from the equilibrium point.

Thus, when the spring is released, it will move toward the equilibrium point. This is also true about the acceleration.

Therefore, we can conclude that the direction of the acceleration vector is towards the equilibrium point.

Learn more about spring constant:

https://brainly.com/question/9199238

#SPJ1

A satellite is in a circular orbit very close to the surface of a spherical planet. The period of the orbit is 2.35 hours. What is density of the planet? Assume that the planet has a uniform density.

Answers

The density of the planet is determined as 1,974.26 kg/m³.

Density of the planet

√(⁴/₃πGρ) = 2π/(2.35 x 3600)

where;

ρ is density of the planetG is universal gravitation constant

√(⁴/₃πGρ) = 2π/(2.35 x 3600)

√(⁴/₃πGρ) = 2π/8460

(⁴/₃πGρ)  = (2π/8460)²

⁴/₃πGρ = 4π²/(8460)²

ρ = 12π/(8460² x 4G)

ρ = (12π) / (8460² x 4 x 6.67 x 10⁻¹¹)

ρ = 1,974.26 kg/m³

Thus, the density of the planet is determined as 1,974.26 kg/m³.

Learn more about density here: https://brainly.com/question/6838128

#SPJ1

The decibel level of the sound from a certain hair dryer is measured at 60 dB. Find the intensity of the sound.

Answers

Based on the calculations, the sound intensity level is equal to 1.0 × 10⁻⁵ W/m².

How to determine intensity of the sound?

Mathematically, sound intensity level can be calculated by using this formula:

[tex]\beta = 10 log(\frac{I}{I_{ref}} )[/tex]

Where:

I is the intensity of the sound.

Note: The reference value of sound intensity is equal to 1.0 × 10⁻¹² W/m².

Rewriting the formula, we have:

β/10 = logI - logIo

Substituting the parameters into the formula, we have;

60/10 = logI - log(1.0 × 10⁻¹²)

6 = logI + 12

logI = 6 - 12

logI = -6

I = 1.0 × 10⁻⁵ W/m².

Read more on sound intensity here: https://brainly.com/question/17062836

#SPJ1

Other Questions
In north america, three new and very different empires had arisen in the late seventeenth century:____. An airplane covers 3450 km in an hour. how much distance will it cover in 7 hours? Why was banking reform an important first step in the New Deal? economic fist semester guid Identify the range of values for y.The figure shows a triangle. The first side of the triangle goes from the lower left corner to the upper right corner. The second side of the triangle goes from the lower right corner to the upper left corner. An angle between these sides is an obtuse angle. The third side of the triangle goes from the lower left corner to the lower right corner. A line connects a vertex of the obtuse angle with a point on the third side. This line divides the third side into left and right segments. An angle between this line and the second side measures 60 degrees. An angle between this line and the left segment of the third side measures 105 degrees. The second side of the triangle is congruent to the left segment of the third side. The right segment of the third side has a length of 5 times y plus 8 units. The first side of the triangle has a length of 4 times y plus 15 units. In the selection from Dust Tracks on a Road, why are the school-children threatened when visitors come to observe them? life of piis it true that the characters we encounter can change us,sometimes so profoundly that we are the same after Critically discuss the validity of this statement in relationship to Pi in an essay of 450-450 words A(n) _____ is the end or finish of a process. E is the encoding matrix. Use E to decode the coded message matrix. brainly I need help with this geometry question asap! How many games does one need to play before they can establish an official handicap score?. American Privileges and Immunities: Federalism, the Fourteenth Amendment and the Rights of American Citizenship pdf How many whale skeletons are weathering out of the rock in the valley of the whales? What z-score value separates the highest 70% of the scores in a normal distribution from the lowest 30%? a. z = 0.52 b. z = 0.84 c. z = -0.84 d. z = -0.52 Give the equation of the circle that has a diameter with endpoints G(-6, 3) andR(-6,-8). A flexible hydraulic hose identified as mil-h-8788 will have a stripe running the length of the hose. This stripe? Of the last 16 people at a carnival booth, 6 won a prize. what is the experimental probability that the next person at the booth will win a prize? write your answer as a fraction or whole number. p(win) In which of these situations do the quantities combine to make 0?A. Kathy receives $20 as a gift. She gives half of her $20 to a friend and keeps the rest for herself.B. A player in a game earns 4 points for getting an answer right. She then earns 4 points for making it around the board. C. In the morning, the temperature rises 30 degrees. In the evening, it falls by 30 degrees.D. A hot air balloon rises 40 feet. It then rises another 40 feet. WILL MARK BRAINLIEST!!!!The rise of the guilds would be most directly connected to what medieval process in Western Europe?O FeudalismO ManorialismO ScholasticismO Specialization Which two stances or courses of action has the united states taken regarding latin america?