A charge of uniform density (0.74 nC/m) is distributed along the x axis from the origin to the point x = 10 cm. What is the electric potential (relative to zero at infinity) at a point, x = 23 cm, on the x axis? Hint: Use Calculus to solve this problem.

Answers

Answer 1

Answer:

 V = - 3.85 V

Explanation:

The electric potential of a continuous charge distribution is

       V = k ∫ dq / r

to find charge differential let's use the concept of linear density

        λ = dq / dx

       dq = λ dx

the distance from a load element to the point of interest

       x₀ = 23 cm = 0.23 m

       r = √ (x-x₀)² = x - x₀

we substitute

        v = k ∫ λ dx / (x-x₀)

we integrate and evaluate between x = 0 and x = l = 0.10 cm

       V = k λ [ln (x-x₀) - ln (-x₀)]

       

        V = k λ ln ((x-x₀) / x₀)

let's calculate

         V = 9 10⁹  0.74 10⁻⁹ ln ((0.23 - 0.10) / 0.23)

          V = - 3.85 V


Related Questions

One solenoid is centered inside another. The outer one has a length of 54.0 cm and contains 6750 coils, while the coaxial inner solenoid is 4.00 cm long and 0.170 cm in diameter and contains 21.0 coils. The current in the outer solenoid is changing at 35.0 A/s .What is the mutual inductance of the solenoids?Find the emf induced in the inner solenoid.

Answers

Answer:

 M₁₂ = 1.01 10⁻⁴ H ,   Fem = 3.54 10⁻³ V

Explanation:

The mutual inductance between two systems is

        M₁₂ = N₂ Ф₁₂ / I₁

where N₂ is the number of turns of the inner solenoid N₂ = 21.0, i₁ the current that flows through the outer solenoid I₁ = 35.0 A / s and fi is the flux of the field of coil1 that passes through coil 2

         

the magnetic field of the coil1 is

   B = μ₀ n I₁ = μ₀ N₁/l   I₁

the flow is

             Φ = B A₂

the area of ​​the second coil is

             A₂ = π d₂ / 4

             Φ = μ₀ N₁ I₁ / L  π d² / 4

we substitute in the first expression

            M₁₂ = N₂ μ₀ N₁ / L    π d² / 4

            M₁₂ = μ₀ N₁ N₂ π d² / 4L

           d = 0.170 cm = 0.00170 m

            L = 4.00 cm = 0.00400 m

let's calculate

            M₁₂ = 4π 10⁻⁷ 6750  21 π 0.0017²/ (4 0.004)

             M₁₂ = π² 0.40966 10⁻⁷ / 0.004

             M₁₂ = 1.01 10⁻⁴ H

The electromotive force is

              Fem = - M dI₁ / dt

              Fem = - 1.01 10⁻⁴ 35.0

              Fem = 3.54 10⁻³ V

A 10 n force is applied horizontally on a box to move it 10 m across a frictionless surface. How much work was done to move the box?

Answers

Given from question
Force = 10 N
Displacement = 10 m
Work done = ?
We know that
Work done = force X displacement
So 10 X 10
100
Work done = 100J answer

Answer:

[tex]\boxed {\boxed {\sf 100 \ J}}[/tex]

Explanation:

We are asked to calculate the work done to move a box.

Work is the product of force and distance or displacement.

[tex]W= F*d[/tex]

A 10 Newton force is applied horizontally on the box. Since the surface is frictionless, there is no force of friction, and the net force is 10 Newtons. The force moves the box 10 meters.

F= 10  N d= 10 m

Substitute the values into the formula.

[tex]W= 10 \ N * 10 \ m[/tex]

Multiply.

[tex]W= 100 \ N*m[/tex]

Let's convert the units. 1 Newton meter is equal to 1 Joule, therefore our answer of 100 Newton meters is equal to 100 Joules.

[tex]W= 100 \ J[/tex]

100 Joules of work was done to move the box.

Consider 1 mol an ideal gas at 28∘ C and 1.06 atm pressure. To get some idea how close these molecules are to each other, on the average, imagine them to be uniformly spaced, with each molecule at the center of a small cube.

A) What is the length of an edge of each cube if adjacent cubes touch but do not overlap?

B) How does this distance compare with the diameter of a typical molecule? The diameter of a typical molecule is about 10-10 m. (in l/dmolecule)

C) How does their separation compare with the spacing of atoms in solids, which typically are about 0.3 nm apart? (in l/lsolid)

Answers

Answer:

A) Length of an edge = 3.38 × 10^(-9) m

B) 34 times the diameter of a molecule.

C) 11 times the atomic spacing in solids.

Explanation:

A) We will use Avogadro's hypothesis to solve this. It states that 1 mole of gas occupies 22.4 L at STP.

We want to find the volume occupied by 1 mole of gas at 1.06 atm pressure and temperature of 28 °C (= 301 K).

Thus, by the ideal gas equation, we have;

V_mole = (1 × 22.4/273) × (301/1.06) = 23.3 L = 0.0233 m³

Now, since from avogadros number, 1 mole of gas contains 6.02 x 10^(23) molecules, then volume occupied by a molecule is given by;

V_molecule = 0.0233/(6.02 × 10^(23)) m³ = 3.87 x 10^(-26) m³

Thus, length of an edge of the cube = ∛(3.87 × 10^(-26)) = 3.38 × 10^(-9) m

B) We are told that The diameter of a typical molecule is about 10^(-10) m.

Thus, the distance is about;

(3.38 × 10^(-9))/(10^(-10)) ≈ 34 times the diameter of a molecule.

C) We are told that the spacing of atoms is typically are about 0.3 nm apart

Thus;

The separation will be about;

(3.38 × 10^(-9))/(0.3 × 10^(-9)) ≈ 11 times the atomic spacing in solids.

A body is thrown vertically upwards with a speed of 95m / s and after 7s it reaches its maximum height. How fast does it reach its maximum height? What was the maximum height reached?

Answers

Explanation:

u = 95 m/sec ( Initial speed)

t = 7 sec ( Time of ascent)

According to Equations of Motion :

[tex]s = ut - \frac{1}{2} g {t}^{2} [/tex]

Max. Height = 95 * 7 - 4.9 * 49 = 424. 9 = 425 m

Answer:

332.5 m

Explanation:

At the maximum height, the velocity is 0.

Given:

v₀ = 95 m/s

v = 0 m/s

t = 7 s

Find: Δy

Δy = ½ (v + v₀) t

Δy = ½ (0 m/s + 95 m/s) (7 s)

Δy = 332.5 m

A parallel-plate capacitor consists of two square plates, size L×L, separated by distance d. The plates are given charge ±Q . What is the ratio Ef/Ei of the final electric field strength Ef to the initial electric field strength Ei if:
a. Q is doubled?
b. L is doubled?
c. d is doubled?

Answers

Answer:

Using

A. .E = σ/εo = (q/A)/εo = = q/Aεo so if q = 2q, then

Ef/Ei = 2

B. If L is 2L then Ef = q/4Aεo and

Ef/Ei = 1/4

C. The electric field strength is not effected by d and as long as σ is unchanged, Ef/Ei = 1

Air is compressed polytropically from 150 kPa, 5 meter cube to 800 kPa. The polytropic exponent for the process is 1.28. Determine the work per unit mass of air required for the process in kilojoules
a) 1184
b) -1184
c) 678
d) -678

Answers

Answer:

wegkwe fhkrbhefdb

Explanation:B

Which of the following measures is equal to 700 km?

Answers

Answer:

1km=1000m

700km=

700×1000=700000

=700000metres

hope this helps

Helium-neon laser light (λ = 6.33 × 10−7 m) is sent through a 0.30 mm-wide single slit. What is the width of the central maximum on a screen 1.0 m from the slit?

Answers

Answer:

The width is [tex]w_c = 0.00422 \ m[/tex]

Explanation:

From the question we are told that

   The  wavelength is  [tex]\lambda = 6.33*10^{-7} \ m[/tex]

    The  width of the slit is  [tex]d = 0.3\ mm = 0.3 *10^{-3} \ m[/tex]

    The distance of the screen is  [tex]D = 1.0 \ m[/tex]

     

Generally the central maximum is mathematically represented as

      [tex]w_c = 2 * y[/tex]

Here  y is the width of the first order maxima which is mathematically represented as

      [tex]y = \frac{\lambda * D}{d}[/tex]

substituting values

      [tex]y = \frac{6.33*10^{-7} * 1.0}{ 0.30}[/tex]

       [tex]y = 0.00211 \ m[/tex]

So  

    [tex]w_c = 2 *0.00211[/tex]

     [tex]w_c = 0.00422 \ m[/tex]

A person looks horizontally at the edge of a swimming pool. If its length is 5 m, and the pool is filled to the surface, to what depth (in m) could the observer see

Answers

Answer:

The observer could see to a depth of 4.38 m

Explanation:

Please check attachment for diagram.

Mathematically, from Snell law;

n1sin theta = n2 sin theta

1 * sin 90 = n2 * sin θR

where n2 = 1.33

1/1.33 = sin θR

Sin θR = 0.7519

θR = arc sin 0.7519

θR = 48.76

Now to get the height, we use the triangle

Using trigonometric ratio;

Tan( 90- θR) = H/5

H = 5 Tan( 90 - θR)

H = 5 Tan( 90-48.76)

H = 5 Tan41.24

H = 4.38 m

Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/2 its former radius. a. What are the pressure and velocity of the water after the contraction

Answers

Answer:

Explanation:

Using the Continuity equation

v X A = v' xA'

so if A is 1/2of A' then A velocity must be 2 times the A'

after-contraction v = 2 x 5.0m/s = 10m/s

Using the Bernoulli equation

p₁ + ½ρv₁² + ρgh₁ = p₂ + ½ρv₂² + ρgh₂

, the "h" terms cancel

3.5 x 10^ 5Pa + ½ x 1000kg/m³x (5.0m/s)² = p₂ + ½ x 1000kg/m³ x (10m/s)²

p₂ = 342500pa

Select the correct answer.
What is abstraction?
OA. the concept that software architecture can be separated into modules and that each module can be examined independently
OB. the process of containing information within a module, preventing any crossover or access to Irrelevant information
OC. the process of splitting a program both horizontally and vertically
OD. the process of cutting down irrelevant information so only the information that is useful for a particular purpose remains
Reset
Next
2021 Edmentum. All rights reserved.
O
Sign out
4:

Answers

Answer:

OD. The process of cutting down irrelevant information so only the information that is useful for particular purpose remains

Abstraction is the process of cutting down irrelevant information so only the information that is useful for a particular purpose remains.

What is abstraction?

Abstraction is the practice of removing anything from a set of core features by eliminating or deleting attributes.

One of the three core ideas of object-oriented programming is abstraction order to decrease complexity and maximize efficiency, a programmer uses abstraction to conceal all but the important facts about an object.

Abstraction is the process of cutting down irrelevant information so only the information that is useful for a particular purpose remains.

Hence option D is correct.

To learn more about the abstraction refer to the link;

https://brainly.com/question/13072603

the rate of cooling determines ....... and ......​

Answers

Answer:

freezing point and melting point

An astronomer is measuring the electromagnetic radiation emitted by two stars, both of which are assumed to be perfect blackbody emitters. For each star she makes a plot of the radiation intensity per unit wavelength as a function of wavelength. She notices that the curve for star A has a maximum that occurs at a shorter wavelength than does the curve for star B. What can she conclude about the surface temperatures of the two stars

Answers

Answer:

Star A has a higher surface temperature than star B.

Explanation:

The effective temperature of a star can be determined by means of its spectrum and Wien's displacement law:

[tex]T = \frac{2.898x10^{-3} m. K}{\lambda max}[/tex] (1)

Where T is the effective temperature of the star and [tex]\lambda_{max}[/tex] is the maximum peak of emission.  

A body that is hot enough emits light as a consequence of its temperature. For example, if an iron bar is put in contact with fire, it will start to change colors as the temperature increase, until it gets to a blue color, that scenario is known as Wien's displacement law. Which establishes that the peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase and higher wavelengths as the temperature decreases.

Therefore, star A has a higher surface temperature than star B, as it is shown in equation 1 since T and [tex]\lambda max[/tex] are inversely proportional.

A plastic box with objects has a mass of 4 kg and is on a shelf at a height of 2.4 m. What will it's potential gravitational energy?

Answers

Answer:

potential energy=mgh

4×9.8×2.4

Explanation:

may be hope this will help you

please help !!!!! please note that two images are there................ i am urgently needs this question

Answers

Answer:

can you tell me about this property

can you guys pls also solve for average speed.

Answers

Answer:

d_t = 3.05km

v_a = 4.3km/h

Explanation:

42mins*(2/3) = 28mins

42mins-28mins = 14mins

d = v*t

d_1 = (4km/h)*(1h/60mins)*(28mins)

d_1 = 1.87km

d_2 = (5km/h)*(1h/60mins)*(14mins)

d_2 = 1.17km

d_t = d_1+d_2

d_t = 1.87km+1.17km

d_t = 3.05km

v_a = (v_1+v_2)/2

v_a = [(2*4km/h)+5km/h)]/3

v_a = 4.3km/h

Air flows through a converging-diverging nozzle/diffuser. A normal shock stands in the diverging section of the nozzle. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables.

Answers

Answer:

HELLO your question has some missing parts below are the missing parts

note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively.

--Given Values--

Inlet Temperature: T1 (K) = 325

Inlet pressure: P1 (kPa) = 560

Inlet Velocity: V1 (m/s) = 97

Throat Area: A (cm^2) = 5.3

Pressure upstream of (before) shock: Px (kPa) = 207.2

Mach number at exit: M = 0.1

Answer: A)  match number at inlet  = 0.2683

              B)  stagnation temperature at inlet =  329.68 k

              C)  stagnation pressure = 588.73 kPa

              D) ) Throat temperature = 274.73 k

Explanation:

Determining states at several locations in the system

A) match number at inlet

= V1 / C1 = 97/ 261.427 = 0.2683

C1 = sound velocity at inlet = [tex]\sqrt{K*R*T}[/tex] = [tex]\sqrt{1.4 *0.287*10^3}[/tex]  = 361.427 m/s

v1 = inlet velocity = 97

B) stagnation temperature at inlet

     = T1 + [tex]\frac{V1 ^2}{2Cp}[/tex]  = 325 + [tex]\frac{97^2}{2 * 1.005*10^{-3} }[/tex]

stagnation temperature = 329.68 k

C) stagnation pressure

= [tex]p1 ( 1 + 0.2Ma^2 )^{3.5}[/tex]

Ma = match number at inlet = 0.2683

p1 = inlet pressure = 560

hence stagnation pressure = 588.73 kPa

D) Throat temperature

= [tex]\frac{Th}{T} = \frac{2}{k+1}[/tex]

Th = throat temperature

T = stagnation temp at inlet = 329.68 k

k = 1.4

make Th subject of the relation

Th = 329.68 * (2 / 2.4 ) = 274.73 k

Under normal circumstances: _________
a. Fetal Hb binds to oxygen more tightly than Mb binds.
b. Fetal Hb binds oxygen more tightly in the absence of 2,3-BPG.
c. Fetal Hb does not bind to oxygen.
d. Adult Hb has the lowest affinity for oxygen of the 3.
e. More than one of these statements is correct.

Answers

Answer:

Fetal Hb binds oxygen more tightly than adult Hb (not option a)

A deep-space vehicle moves away from the Earth with a speed of 0.870c. An astronaut on the vehicle measures a time interval of 3.10 s to rotate her body through 1.00 rev as she floats in the vehicle. What time interval is required for this rotation according to an observer on the Earth

Answers

Answer:

t₀ = 1.55 s

Explanation:

According to Einstein's Theory of Relativity, when an object moves with a speed comparable to speed of light, the time interval measured for the event, by an observer in  motion relative to the event is not the same as measured by an observer at rest.

It is given as:

t = t₀/[√(1 - v²/c²)]

where,

t = time measured by astronaut in motion = 3.1 s

t₀ = time required according to observer on earth = ?

v = relative velocity = 0.87 c

c = speed of light

3.1 s = t₀/[√(1 - 0.87²c²/c²)]

(3.1 s)(0.5) = t₀

t₀ = 1.55 s

Answer:

The time interval required for this rotation according to an observer on the Earth = [tex]6.29sec[/tex]

Explanation:

Time interval required for this rotation according to an observer on the Earth is given as [tex]\delta t[/tex]

where,

[tex]t_o = 3.1\\\\v = 0.87[/tex]

[tex]\delta t = \frac{t_o}{\sqrt{1-\frac{v^2}{c^2}}}\\\\\delta t = \frac{3.1}{\sqrt{1-(\frac{0.87c}{c})^2}}\\\\\delta t = 6.29sec[/tex]

For more information visit

A rock has mass 1.80 kg. When the rock is suspended from the lower end of a string and totally immersed in water, the tension in the string is 10.8 N . What is the smallest density of a liquid in which the rock will float?

Answers

Answer:

The density is  [tex]\rho_z = 2544 \ kg /m^3[/tex]

Explanation:

From the question we are told that

    The mass of the rock is  [tex]m_r = 1.80 \ kg[/tex]

     The  tension on the string is  [tex]T = 10.8 \ N[/tex]

Generally the weight of the rock is  

        [tex]W = m * g[/tex]

=>     [tex]W = 1.80 * 9.8[/tex]

=>   [tex]W = 17.64 \ N[/tex]

Now the upward force(buoyant force) acting on the rock  is mathematically evaluated as  

        [tex]F_f = W - T[/tex]

substituting values

       [tex]F_f = 17.64 - 10.8[/tex]

      [tex]F_f = 6.84 \ N[/tex]

This buoyant force is mathematically represented as

      [tex]F_f = \rho * g * V[/tex]

Here  [tex]\rho[/tex] is the density of water and it value is [tex]\rho = 1000\ kg/m^3[/tex]

 So

         [tex]V = \frac{F_f}{ \rho * g }[/tex]

        [tex]V = \frac{6.84}{ 1000 * 9.8 }[/tex]

        [tex]V = 0.000698 \ m^3[/tex]

Now for this rock to flow the upward force (buoyant force) must be equal to the length

      [tex]F_f = W[/tex]

      [tex]\rho_z * g * V = W[/tex]

Here z is smallest density of a liquid in which the rock will float

=>     [tex]\rho_z = \frac{W}{ g * V}[/tex]

=>   [tex]\rho_z = \frac{17.64}{ 0.000698 * 9.8}[/tex]

=>   [tex]\rho_z = 2544 \ kg /m^3[/tex]

A damped oscillator is released from rest with an initial displacement of 10.00 cm. At the end of the first complete oscillation, the displacement reaches 9.05 cm. When 4 more oscillations are completed, what is the displacement reached

Answers

Answer:

The  displacement is  [tex]A_r = 6.071 \ cm[/tex]

Explanation:

From the question we are told that

   The initial displacement is [tex]A_o = 10 \ cm[/tex]

     The displacement at the end of first oscillation is  [tex]A_d = 9.05 \ cm[/tex]

     

Generally the damping constant of this damped oscillator is mathematically represented as  

           [tex]\eta = \frac{A_d}{A_o}[/tex]

substituting values

           [tex]\eta = \frac{9.05}{10}[/tex]

        [tex]\eta = 0.905[/tex]

The displacement after 4 more oscillation is mathematically represented as

       [tex]A_r = \eta^4 * A_d[/tex]

substituting values

      [tex]A_r = (0.905)^4 * (9.05)[/tex]

      [tex]A_r = 6.071 \ cm[/tex]

Answer:

Displacement reached is 6.0708 cm

Explanation:

Formula for damping Constant "C"

[tex]C^n=\frac{A_2}{A_1}[/tex]                  where n=1,2,3,........n

Where:

[tex]A_2[/tex] is the displacement after first oscillation    

[tex]A_1\\[/tex] is the initial Displacement

[tex]A_1=10\ cm\\A_2=9.05\ cm\\[/tex]

In our case, n=1.

[tex]C=\frac{9.05}{10}\\C=0.905[/tex]

After 4 more oscillation, n=4:

[tex]C^4=\frac{A_6}{A_2}[/tex]                                        

Where:

[tex]A_6[/tex] is the final Displacement after 4 more oscillations.

[tex]A_6=(0.905)^4*(9.05)\\A_6=6.0708\ cm[/tex]

Displacement reached is 6.0708 cm

if C is The vector sum of A and B C = A + B What must be true about The directions and magnitudes of A and B if C=A+B? What must be tre about the directions and magnitudes of A and B if C=0? ​

Answers

Check attached photo

Check attached photo

Find an analytic expression for p(V)p(V)p(V), the pressure as a function of volume, during the adiabatic expansion.

Answers

Answer:

In an adiabatic process we have

pV γ = const..

This explains that the pressure is a function of volume, p ( V ) ,

So can be written as:

p ( V ) × V γ = p 0 V γ 0 ,

or p ( V ) = p 0 V 0 / V γ

= p 0 V 0 / V ^(7 / 5)

g Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.

Answers

Answer:

No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.

Explanation:

If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)

For a body under this type of equilibrium,

ΣF = 0   ...1

where ΣF is the resultant force (total effective force due to all the forces acting on the body)

For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as

ΣF = ma   ...2

where m is the mass of the body

a is the acceleration of the body

Substituting equation 2 into equation 1, we have

0 = ma

therefore,

a = 0

this means that if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.

Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object

Answers

Answer:

Matter's resistance to a change in motion is called INERTIA and is directly proportional to the mass of an object.

Explanation:

PLEASEEEEEEEE HELP WILL MARK BRAINLYIST

5. Theories are models that explain but laws __________.​

Answers

Answer:

Theories are models that explain but laws just describes an action under certain circumstances

Explanation:

Evolution is a law that does not explain how and why

But evolution by natural selection is a theory because it explain how it happens

Two separate disks are connected by a belt traveling at 5m/s. Disk 1 has a mass of 10kg and radius of 35cm. Disk 2 has a mass of 3kg and radius of 7cm.
a. What is the angular velocity of disk 1?
b. What is the angular velocity of disk 2?
c. What is the moment of inertia for the two disk system?

Answers

Explanation:

Given that,

Linear speed of both disks is 5 m/s

Mass of disk 1 is 10 kg

Radius of disk 1 is 35 cm or 0.35 m

Mass of disk 2 is 3 kg

Radius of disk 2 is 7 cm or 0.07 m

(a) The angular velocity of disk 1 is :

[tex]v=r_1\omega_1\\\\\omega_1=\dfrac{v}{r_1}\\\\\omega_1=\dfrac{5}{0.35}\\\\\omega_1=14.28\ rad/s[/tex]

(b) The angular velocity of disk 2 is :

[tex]v=r_2\omega_2\\\\\omega_2=\dfrac{v}{r_2}\\\\\omega_2=\dfrac{5}{0.07}\\\\\omega_2=71.42\ rad/s[/tex]

(c) The moment of inertia for the two disk system is given by :

[tex]I=I_1+I_2\\\\I=\dfrac{1}{2}m_1r_1^2+\dfrac{1}{2}m_2r_2^2\\\\I=\dfrac{1}{2}(m_1r_1^2+m_2r_2^2)\\\\I=\dfrac{1}{2}\times (10\times (0.35)^2+3\times (0.07)^2)\\\\I=0.619\ kg-m^2[/tex]

Hence, this is the required solution.

A 1.8-mole sample of an ideal gas is allowed to expand at a constant temperature of 250 K. The initial volume is 34 L and the final volume is 80 L. How much work does the gas perform on its container? Let the ideal-gas constant R = 8.314 J/(mol • K).

Answers

Answer:

3201.304 J

Explanation:

Use ideal gas equation to initial stage:

PV=nRT

P * 0.034 = 1.8 * 8.314 * 250

P = 110038.2353 Pa

Use ideal gas equation to final stage:

PV=nRT

P * 0.08 = 1.8 * 8.314 * 250

P = 46766.25 Pa

Process is isothermal (constant temperature )

Therefore,

Work= C ln (V2/V1)

(P1V1=P2V2=C)

(Above equation is taken by integration of P.dv)

Work = P1V1 ln (V2/V1) = P2V2 ln (V2/V1)

By substituting above data to the equation:

Work = (110038.2353 * 0.034) * ln (0.08/0.034)

Work = 3201.304 J

A skull believed to belong to an ancient human being has a carbon-14 decay rate of 5.4 disintegrations per minute per gram of carbon (5.4 dis/min*gC). If living organisms have a decay rate of 15.3 dis/min*gC, how old is this skull

Answers

Answer:

9.43*10^3 year

Explanation:

For this question, we ought to remember, or know that the half life of carbon 14 is 5730, and that would be vital in completing the calculation

To start with, we use the formula

t(half) = In 2/k,

if we make k the subject of formula, we have

k = in 2/t(half), now we substitute for the values

k = in 2 / 5730

k = 1.21*10^-4 yr^-1

In(A/A•) = -kt, on rearranging, we find out that

t = -1/k * In(A/A•)

The next step is to substitite the values for each into the equation, giving us

t = -1/1.21*10^-4 * In(5.4/15.3)

t = -1/1.21*10^-4 * -1.1041

t = 0.943*10^4 year

when 999mm is added to 100m ______ is the result​

Answers

Answer:

what,     100.999m

Explanation:

convert 999 mm into meters, which is 0.999m and add that to a 100 m and that will make the total 100.999 m

The result of the addition of the two values is equal to 100.999 meters.

Given the following data:

Value 1 = 999 millimetersValue 2 = 100 meters

To determine the result of the addition of the two values:

First of all, we would convert the value in millimeter (mm) to meter (m) as follows:

Conversion:

1 millimeter = 0.001 meter

999 millimeter = X meter

Cross-multiplying, we have:

[tex]X = 0.001 \times 999[/tex]

X = 0.999 meter.

For the result:

[tex]Result = 0.999 +100[/tex]

Result = 100.999 meters.

Read more on measurements here: https://brainly.com/question/24842282

Other Questions
Among Patients who did not relapse which statement was most effective and whats its conditional relative frequency Use the diagram below to answer the questions.Which are shown on the diagram? Check all that apply.JLKMJKPKLJKMJ What is 22 x 2 + 6 = x helppfind the value of x and y Factorise: 5 x cube + 10 x square + 15 x solve the following equations x-1=6/x I need help ASAP!!! Please explain your answer . III. Correct the word in the blankets 1. My brother had an accident and his situation is quite........ (WORRY) 2. When I visited that abandoned house it was really....... (DEPRESS) 3. I think he was........ because he called Mary and my name is Rose. (CONFUSE) 4. That film is not......... despite being a comedy. (AMUSE) 5. Your bathroom is .......... Couldn't you clean it a little? (DISGUST) in reading one of my novels? (INTEREST) 7. What is the most....... story you've ever heard? (FRIGHTEN) 6. Are you ...... in reading one of my novels ? Plss , I need it now Determine algebraically whether f(x) = x2(x2 + 9)(x3 + 2x) is even or odd. 3kg of rump steak costs 42 adel buys 4kg of rump steak work out how much adel pays State the law of conservation of machine c program to generate prime numbers from 1 to 100.Also count prime numbers. For the partial diploid you've created, F' I+ P+ Oc Z Y+ / I P+ O+ Z+ Y , you already know that the promoter sequences for copies are functional, so you can focus on the repressor proteins and operator regions that control expression.Indicate the source of repressor protein and the operator region(s) to which it binds. Then indicate how this affects expression of lac genes from the F' plasmid and from the bacterial chromosome.MATCH 1. Repressor protein is made from__________. 2. Repressor protein is able to bind to the operator region on_________. 3. Functional beta-galactosidase protein could be made from__________. 4. Functional permease protein could be made from___________. a. the F' plamid. b. the bacterial chromosome. c. both the F' plasmid and the chromosome. d. neither the F' plasmid nor the chromosome. A toddler is going to have surgery on the right ear. Which teaching method is most appropriate for this developmental stage? a. Encourage independent learning. b. Use discussion throughout the teaching session. c. Apply a bandage to a dolls ear. d. Develop a problem-solving scenario. Today, the high box-pews that were reserved for the prominent can still be seen at St. Luke's. (SOS) True False Which is a factor of: 2x2+10x+8 ? A story was being told by him ( change into active voice) Explain why James Baldwin says any Negro who is born in this country and undergoes the American educational system runs the risk of becoming schizophrenic. What are the coordinates of the vertices of the polygon in the graph that are in Quadrant II? A) (4,2) B) (4,3), (0,5), (0,1) C) (5,2), (3,2), (3,4) D) (1,0), (5,2), (3,2), (3,4), (0,5), (0,1) Pls help!! An educator hypothesizes that the median of the number of students enrolled in cyber schools in school districts in southwestern Pennsylvania is 25. Ata= 0.05, is there enough evidence to reject the educators claim? The data are shown here. What benefit would this information provide to the school board of a local school district? 12 41 26 14 4 38 27 27 9 11 17 11 66 5 14 8 35 16 25 17