given two temperatures, 39 °F and 51°F, which if the following correctly compares the number of chances for particals to bounce off each other during chemical reaction?
Same at both
Lower at 39 °F
Lower at 51 °F
Does not depend on temperature​

Answers

Answer 1

Answer:

Higher temperature = more bouncing.

So, the correct answer is that there will be less bouncing at 39 degrees F. (Lower at 39 F)

Let me know if this helps!


Related Questions

The element europium exists in nature as two isotopes: has a mass of u and has a mass of u. The average atomic mass of europium is u. Calculate the relative abundance of the two europium isotopes.

Answers

Answer:

Problem Details

The element europium exists in nature as two isotopes:  151Eu has a mass of 150.9196 amu, and 153Eu has a mass of 152.9209 amu. The average atomic mass of europium is 151.96 amu. Calculate the relative abundance of the two europium isotopes.

answer:

151Eu = 48%, 153Eu = 52%


How has the work of chemists affected the environment over the years?

Answers

Answer:

Chemistry is one of the causes for global warming, and in some cases it can even cause certain illnesses.

Answer:

Chemists have both hurt the environment and helped the environment by their actions.

Explanation:

<3

Predict the reactants of this chemical reaction. That is, fill in the left side of the chemical equation. Be sure the equation you submit is balanced.

_______ → Ba(ClO)2 + H2O(l)

Answers

Answer:

2HClO(aq) + Ba(OH)₂(aq) →  Ba(ClO)₂(aq) + 2H₂O(l)

Explanation:

The reaction corresponds to a neutralization reaction between an acid and a base, as follows:

2HClO(aq) + Ba(OH)₂(aq)  →  Ba(ClO)₂(aq) + 2H₂O(l)            

From the equation above we have that the acid HClO reacts with the base Ba(OH)₂ to obtain a salt Ba(ClO)₂ and water.

In the balanced reaction, we have that 2 moles of HClO react with 1 mol of Ba(OH)₂ to produce 1 mol of Ba(ClO)₂ and 2 moles of water.

I hope it helps you!    

A student puts a glass of water in the freezer. Later, he notices ice forming on the surface of the water. Which property of water best explains why ice forms on its surface? A. It is made of polar molecules. B. It has low surface tension. C. It has weak adhesion. D. It is densest as a solid.

Answers

ℯ ℴ ℴ ℴℯℯ

it has a weak adhesion

Why must beta particles be used to detect leaks in a pipe?

Why must beta particles be used to detect leaks in a pipe?
A. Beta particles will not be absorbed by the soil like gamma radiation, but won't pass through the pipe before reaching the leak like alpha radiation would.
B. Beta particles will not cause an electrical discharge like alpha particles when they interact with the metal pipe, or contaminate the water like gamma radiation.
C. Beta particles are not used, only alpha particles are used because they are not harmful to humans.
D. Beta particles will not be absorbed by the soil like alpha particles, but won't pass through the pipe before reaching the leak like gamma radiation would.

Answers

Should be D, because alpha particles are absorbed by soil and gamma isn't

Beta particles will not be absorbed by the soil like alpha particles, but won't pass through the pipe before reaching the leak.

What is Beta particle?

This type of particle is a high-speed electron and is derived from the process of beta decay.

It is used to detect leaks in pipe because it will not be absorbed by the soil like alpha particles, but won't pass through the pipe before reaching the leak like gamma radiation would.

Read more about Beta particle here https://brainly.com/question/14324290

Does a reaction occur when aqueous solutions of potassium hydroxide and chromium(III) bromide are combined

Answers

Explanation:

Potassium hydroxide = KOH

Chromium(iii)bromide = CrBr3

Yes! A reaction occurs. This is given by the balanced equation;

3 KOH + CrBr3 → 3 KBr + Cr(OH)3

Provide the name(s) for the tertiary alcohol(s) with the chemical formula C6H14O that have a 4-carbon chain. Although stereochemistry may be implied in the question, DO NOT consider stereochemistry in your name. Alcohol #1______ Alcohol #2: ______Alcohol #3______

Answers

Answer:

Explanation:

A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.

Based on the question, the only tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain is

2-hydroxy-2,3-dimethylbutane

     H  OH   H    H

      |     |       |      |

H - C - C -   C  - C - H

      |     |       |      |

     H  CH₃  CH₃ H

From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain

At a constant temperature, a sample of a gas in a balloon that originally had a volume of 5.00 L and pressure of 626 torr has its volume changed to 6.72 L. Calculate the new pressure in torr.

Answers

Answer:

466 torr

Explanation:

Step 1: Given data

Initial pressure (P₁): 626 torrInitial volume (V₁): 5.00 LFinal pressure (P₂): ?Final volume (V₂): 6.72 LConstant temperature

Step 2: Calculate the final pressure

Since we have a gas changing at a constant temperature, we can calculate the final pressure using Boyle's law.

P₁ × V₁ = P₂ × V₂

P₂ = P₁ × V₁ / V₂

P₂ = 626 torr × 5.00 L / 6.72 L

P₂ = 466 torr

The intermolecular forces present in CH 3NH 2 include which of the following? I. dipole-dipole II. ion-dipole III. dispersion IV. hydrogen bonding

Answers

Answer:

I. dipole-dipole

III. dispersion

IV. hydrogen bonding

Explanation:

Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.

London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.

Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.

Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.

Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.

Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.

Answer:

The intermolecular forces present in CH_3NH_2 includes

II. (ion-dipole) and IV. (hydrogen bonding)

Explanation:

The intermolecular forces present in CH_3NH_2 includes II. (ion-dipole) and IV. (hydrogen bonding)

It is a polar molecule due to NH polar bond and it can form Hydrogen bond also due to NH bond.

Interaction will be dipole- dipole and Hydrogen dispersion forces can always be taken into account.

For more information on intermolecular forces, visit

https://brainly.com/subject/chemistry

There are approximately 2 × 1022 molecules and atoms in each breath we take and the concentration of CO in the air is approximately 9 ppm. How many CO molecules are in each breath we take? solution

Answers

Answer:

1.8x10¹⁷ molecules of CO are in each breath we take

Explanation:

Parts per million, ppm, is an unit of concentration in chemistry used for very diluted solutions.

A 9ppm of X in a solution means in 1 million of molecules (1x10⁶) you have only 9 molecules of X.

In a breath we have 2x10²² molecules and 9 ppm are CO. Thus, CO molecules in each breath are:

2x10²² molecules × (9 molecules CO / 1x10⁶ molecules) =

1.8x10¹⁷ molecules of CO are in each breath we take

[tex]1.8\times 10^{17}[/tex] molecules of CO are in each breath we take

The calculation is as follows:

A 9ppm of X in a solution represent in 1 million of molecules[tex](1\times10^6)[/tex]you have only 9 molecules of X.

Now CO molecules in each breath is

[tex]= 2\times 10^{22}\ vmolecules \times (9\ molecules\ CO \div 1\times 10^6 molecules) \\\\= 1.8\times 10^{17}[/tex]

Learn more: https://brainly.com/question/10309631?referrer=searchResults

Briefly describe how you can use spectra as evidence of nuclear fusion in stars.

Answers

Spectra can be used as an evidence that nuclear fusion occurs in the star through the ability of the elements generated to absorb light at specific wavelength.

The internal part of the star is made up of hydrogen gas, with a little helium.

The helium atom is formed through the nuclear fusion reaction that occurs in the core of the star.

Nuclear fusion reaction involves the combination of two or more atoms which leads to the formation of a new atom with the emission of great energy. This reaction leads to formation of helium elements in the core of the stars.

To detect if nuclear fusion reaction is occurring in the stars, a spectrum is used.

Because each element emits or absorbs light only at specific wavelengths, the chemical composition of stars can be determined using a spectrum.

Learn more here:

https://brainly.com/question/18545784

What subatomic particles surround the nucleus? Question 1 options: protons neutrons atoms electrons

Answers

Answer:

Electrons "surround"

Explanation:

Protons and neutrons "make up" the nucleus so they are contained "within" the nucleus meaning that electrons would "surround" the nucleus as they orbit around the nucleus

Answer:

Electrons

Explanation:

Protons and nuetrons are present inside the nucleus of an atom while the electron revolve around the nucleus in different energy levels.

1. Why is it not possible to resolve the compound CH3-NH-CH2-CH3 into a pair of enantiomers?
2. Which one of the following is not affected (or is least affected) by the lone pair of electrons on an amine's nitrogen?
a. solubility in alcohols and in water.
b. hydrogen-bond formation.
c. melting point.
d. dipole moment.
e. basicity.
3. Which of the following compounds is most basic?
a. cyclohexyl amine.
b. p-nitroaniline.
c. 2,6-dimethylaniline.
d. p-methoxyaniline.
d. aniline.

Answers

Answer:

1. In the compound, H3C-NH-CH2-CH3, there are no chiral centers present, chiral centers refer to the configuration in which carbon is attached with four different groups. In the molecules, as there are no chiral centers, therefore the molecule is optically inactive, that is, it will not demonstrate pair of an enantiomer is one of the essential characteristics of optically active compounds is the possession of enantiomeric pairs.  

2. On the nitrogen of aniline, the lone pair of electrons can produce hydrogen bonds, play an essential function in basicity, play an essential role in dipole moment or polarity, and wit the increase in solubility there is an increase in the formation of the hydrogen bond, eventually increasing to boiling point. However, the melting point is not affected. As the melting point is the characteristic of the packing efficacy of a molecule and does not rely upon the anilinic nitrogen's lone pairs.  

3. With the increase in the tendency to donate an electron, basicity increases. However, if the electron is taking part in resonance, the donation will not take place easily, and the compound will be the least basic. Apart from cyclohexyl amine, in all the other given compounds, the lone pair of nitrogen takes part in the process of delocalization or conjugation. Thus, cyclohexyl amine will be most basic as the lone pairs are easily available for donation.  

Predict the most likely bond type for the following.

a. Cu (Copper)
b. KCl (Potassium Chloride)
c. Si (Silicon)
d. CdTe (Cadmium Telluride)
e. ZnTe (Zinc Telluride)

Answers

Answer:

The three major types of bond are ionic, polar covalent, and covalent bonds. Ionic occurs majorly between metals and non-metals, which allows sharing of electrons to form an ionic compound. Whereas covalent bonding calls for complete transfer of electrons between atoms. Polar covalent bonds have unequaly shared electron-pair between two atoms.

Explanation:

a. Cu (Copper)- ionic bonding

b. KCl (Potassium Chloride) - ionic bonding

c. Si (Silicon) - covalent bonding

d. CdTe (Cadmium Telluride) - polar covalent bonding

e. ZnTe (Zinc Telluride)- polar covalent bonding

Compound A is an alkene that was treated with ozone to yield only (CH3CH2CH2)2C=O. Draw the major product that is expected when compound A is treated with a peroxy acid (RCO3H) followed by aqueous acid (H3O+).

Answers

Answer:

2,2,3,3-tetrapropyloxirane

Explanation:

In this case, we have to know first the alkene that will react with the peroxyacid. So:

What do we know about the unknown alkene?

We know the product of the ozonolysis reaction (see figure 1). This reaction is an oxidative rupture reaction. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If [tex](CH_3CH_2CH_2)_2C=O[/tex] is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.

What is the product with the peroxyacid?

This compound in the presence of alkenes will produce peroxides. Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product 2,2,3,3-tetrapropyloxirane. (see figure 2)

whats the ph for a solution poh4 9.78 concentration of solution

Answers

Answer:

4.22

Explanation:

According to the question, the pOH of the solution is 9.78. You may recall that pOH is the hydroxide concentration of a solution.

Also pOH = -log[OH^-]. Hence the pOH is obtained from the hydroxide ion concentration.

Finally, pH + pOH =14

Hence;

pH = 14-pOH

pH= 14-9.78 = 4.22

pH= 4.22

You are a paleontology professor working at a dig site looking for fossils. You come across a deposit that is emitting radiation. Upon further testing you find that the sample is changing from carbon (atomic number 6) into nitrogen (atomic number 7) as radiation is emitted. What type of radiation is it?

Answers

Answer:

β particles

Explanation:

The most common radioactive isotope of carbon is C-13.

The unbalanced nuclear equation is

[tex]\rm _{6}^{13}C \longrightarrow \, ? + \, _{7}^{13N}[/tex]

Let's write the question mark as a nuclear symbol.

[tex]\rm _{6}^{13}C} \longrightarrow \, _{Z}^{A}X+ \, _{7}^{13}N[/tex]

The main point to remember in balancing nuclear equations is that the sums of the superscripts and the subscripts must be the same on each side of the equation.  

Then

13 =  A + 13, so A =  13 - 13 = 0, and

6 = Z + 7, so Z  = 6 - 7 = -1

Then, your nuclear equation becomes

[tex]\rm _{6}^{13}C \longrightarrow \, _{-1}^{0}M + \, _{7}^{13}N[/tex]

The particle with "zero" mass and a charge of -1 is an electron, so the balanced nuclear equation is

[tex]\rm _{6}^{13}C \longrightarrow \, _{-1}^{0}e + \, _{7}^{13}N[/tex]

The radiation consists of β particles (electrons)

Answer:

I think think that the one above me is beta radiation

Explanation:

A variation of the acetamidomalonate synthesis can be used to synthesize threonine. The process involves the following steps: Ethoxide ion deprotonates diethyl acetamidomalonate, forming enolate anion 1; Enolate anion 1 makes a nucleophilic attack on acetaldehyde, forming tetrahedral intermediate 2; Protonation of the oxyanion forms alcohol 3; Acid hydrolysis yields dicarboxyamino alcohol 4; Decarboxylation leads to the final amino acid. Write out the mechanism on a separate sheet of paper, and then draw the structure of tetrahedral intermediate 2.

Answers

Answer:

See figure 1

Explanation:

For this reaction, we have the production of a carbanion as the first step. The base "ethoxide" can remove a hydrogen-producing a negative charge in the carbon (enolate anion 1). Then this negative charge can attack the carbon of the carbonyl group in the molecule acetaldehyde and the tetrahedral intermediate 2 is form. In the next step, we have the protonation of the oxygen to produce alcohol 3. A continuation we have the hydrolysis of the ester groups to produce the Dicarboxyamino alcohol and finally, we have a decarboxylation reaction we will produce the amino acid Threonine.

To further explanations see figure 1

I hope it helps!

You wish to construct a galvanic cell with the anode consisting of a Ni electrode in a 1.0 M Ni(NO3)2 solution. What would be the highest standard cell potential if used as the cathode in this galvanic cell?

Answers

Answer:

Au^3+(aq) +3e ------> Au(s). 1.50 V

Explanation:

When we construct the galvanic cell, our intention is to produce energy by spontaneous electrochemical reactions. In order to have a spontaneous electrochemical reaction, E°cell must be positive. The more positive the value of E°cell, the more spontaneous the reaction is.

E°cell= E°cathode - E°anode

If E°cathode= 1.50 V

E°anode= -0.25 V

E°cell= 1.50 -(-0.25)

E°cell= 1.75 V

Hence the process; Au^3+(aq) +3e ------> Au(s) yields the highest standard cell potential

at 89 ∘C∘C , where [Fe2+]=[Fe2+]= 3.60 MM and [Mg2+]=[Mg2+]= 0.310 MM . Part A What is the value for the reaction quotient, QQQ, for the cell?

Answers

Answer:

8.6×10^-2

Explanation:

The reaction is;

Mg(s) + Fe^2+(aq) -----> Mg^2+(aq) + Fe(s)

This implies that;

Q = [Mg^2+]/[Fe^2+]

But;

[Fe2+]= 3.60 M

[Mg2+]= 0.310 M

Q= [0.310 M]/[3.60 M]

Q= 0.086

Q= 8.6×10^-2

how do elasticity ang flexibility differ?

Answers

Answer:

the object will regain its original form as soon as the deforming force is removed. ... Flexibility means the object is just easily deformed, and will stay that way.

Explanation:

Consider the bond dissociation energies listed below in kcal/mol. CH3-Br 70 CH3CH2-Br 68 (CH3)2CH-Br 68 (CH3)3C-Br 65 These data show that the carbon-bromine bond is weakest when bromine is bound to a __________.

Answers

Answer:

The answer is "Tertiary carbon".

Explanation:

Accent to the results, the carbon-bromine bond is weak, whenever, the bromine is connected to tertiary carbon so, bonding energy is separation for methyl-carbon, which is connected to the bromine = 70 kcal/mol and for the primary energy to the secondary energy is=  68 kcal/mol, and for tertiary CO2 = 65 kcal/mol.

The stronger the energy dissociating connection and the weaker, its power dissociation connection and its weaker bond becomes connecting with a tertiary carbon, that's why "Tertiary carbon" is the correct answer.

A hypothetical metal crystallizes with the face-centered cubic unit cell. The radius of the metal atom is 198 picometers and its molar mass is 195.08 g/mol. Calculate the density of the metal in g/cm3.

Answers

Answer:

7.38 g/cm³ is the density of the metal

Explanation:

In a Face-centered cubic unit cell you have 4 atoms. Also, the edge length is √8×r (r is radius of the atom).

To solve this problem, we need first to calculate the volume of the unit cell and then, with molar mass calculate the mass of 4 atoms. As density is the ratio between mass and volume we can obtain this value.

Volume of the unit cell

Volume = a³

a = √8×r

(r = 198x10⁻¹²m)

a = 5.6x10⁻¹⁰ m

Volume = 1.756x10⁻²⁸ m³

1m = 100cm → 1m³ = (100cm)³:

1.756x10⁻²⁸ m³× ((100cm)³ / 1m³) =

1.756x10⁻²² cm³ → Volume of the unit cell in cm³Mass of the unit cell:

There are 4 atoms of gold:

4 atoms × (1mol / 6.022x10²³ atoms) = 6.64x10⁻²⁴ moles of gold

As 1 mole weighs 195.08g:

6.64x10⁻²⁴ moles of gold × (195.08g / mol) =

1.296x10⁻²¹g is the mass of the unit cellDensity of the metal:

1.296x10⁻²¹g / 1.756x10⁻²² cm³ =

7.38 g/cm³ is the density of the metal

The density of the metal is 7.40 g/cm³

In cubic crystal system, face-centered cubic FFC is the name given to sort of atom arrangement observed in which structure is made up of atoms organized in a cube with a portion of an atom in each corner and six extra atoms in the center of each cube face.

It is expressed by using the formula:

[tex]\mathbf{\rho = \dfrac{Z \times M}{N_A\times a^}}[/tex]

where;

[tex]\rho[/tex] = density of the metalZ = atoms coordination no = 4 (for FCC)Molar mass (M) = 195.8 g/molAvogadro's constant (NA) = 6.022 × 10²³ /mola = edge length

For face-centered cubic FFC;

The edge length  [tex]\mathbf{a =2 \sqrt{2}\times r }[/tex]

[tex]\mathbf{a =2 \sqrt{2}\times 198 \ pm }[/tex]

[tex]\mathbf{a =560.0285 \ pm }[/tex]

a = 5.60 × 10⁻⁸ cm

Replacing it into the previous equation, we have:

[tex]\mathbf{\rho = \dfrac{4 \times 195.8}{6.022 \times 10^{23} \times( 5.60 \times 10^{-8} )^3}}[/tex]

[tex]\mathbf{\rho = 7.40\ g/cm^3 }[/tex]

Learn more about face-centered cubic arrangement here:

https://brainly.com/question/14786352?referrer=searchResults

g What is the molarity of hydrochloric acid if 40.95 mL of HCl is required to neutralize 0.550 g of sodium oxalate, Na2C2O4

Answers

Answer:

0.0002 M

Explanation:

The molarity of the HCl required would be 0.0002 M.

First, let us consider the balanced equation of the reaction:

[tex]Na_2C_2O_4 + 2HCl = 2NaCl + H_2 + 2CO_2[/tex]

Stoichiometrically, 1 mole of [tex]Na_2C_2O_4[/tex] reacts with 2 moles of [tex]HCl[/tex] for a complete neutralization reaction.

Recall that: mole = [tex]\frac{mass}{molar mass}[/tex]

Mole of 0.550 g sodium oxalate = 0.550/134 = 0.0041 mole

If 1 mole [tex]Na_2C_2O_4[/tex] requires 2 moles HCl, then 0.0041 mole will require:

    0.0041 x 2 = 0.0082 mole HCl

Volume of the HCl = 40.95 L

Molarity = mole/volume

Hence, molarity of the HCl = 0.0082/40.95 = 0.0002 M

In a fixed cylinder are 3moles of oxygen gas at 300Kelvin and 1.25atm. What is the volume of the container?

Answers

Answer:

The volume of the container is 59.112 L

Explanation:

Given that,

Number of moles of Oxygen, n = 3

Temperature of the gas, T = 300 K

Pressure of the gas, P = 1.25 atm

We need to find the volume of the container. For a gas, we know that,

PV = nRT

V is volume

R is gas constant, R =  0.0821 atm-L/mol-K

So,

[tex]V=\dfrac{nRT}{P}\\\\V=\dfrac{3\ mol\times 0.0821\ L-atm/mol-K \times 300\ K}{1.25\ atm}\\\\V=59.112\ L[/tex]

So, the volume of the container is 59.112 L

Read the article. Use your understanding to answer the questions that follow. What type of source is this article? primary or secondary and how do you know

Answers

Answer: C

Explanation:

The article was sourced from the Oak National Laboratory

Which reasons did you include in your response? Check all of the boxes that apply.

1. The article does not present original research.

and

3. The article has references to primary sources.

Answer:

C

Explanation:

Which reasons did you include in your response? Check all of the boxes that apply.

The article does not present original research.

The article summarizes other research.

The article has references to primary sources.

Read the following statement:

Energy cannot be created or destroyed.

Does the statement describe a scientific law? (3 points)

a
No, because it universally applies to all objects

b
No, because it is not true in all circumstances

c
Yes, because it universally applies to all objects

d
Yes, because it is not true in all circumstances

Answers

Answer:

C. yes, because it is universally applies to all objects

Calculate the pH of a solution that is 0.210 M in nitrous acid (HNO2) and 0.290 M in potassium nitrite (KNO2). The acid dissociation constant of nitrous acid is 4.50 × 10-4.

Answers

Answer:

pH = 3.49

Explanation:

We have a buffer system formed by a weak acid (HNO₂) and its conjugate base (NO₂⁻ coming from KNO₂). We can calculate the pH  of a buffer ssytem using the Henderson-Hasselbach equation.

pH = pKa + log [base] / [acid]

pH = -log Ka + log [NO₂⁻] / [HNO₂]

pH = -log 4.50 × 10⁻⁴ + log 0.290 M / 0.210 M

pH = 3.49

The pH of the solution containing 0.210 M nitrous acid (HNO₂) and 0.290 M potassium nitrite (KNO₂) is 3.49

We'll begin by calculating the the pKa of acid. This can be obtained as follow:

Acid dissociation constant (Ka) = 4.50×10¯⁴

pKa =?

pKa = –Log Ka

pKa = –Log 4.50×10¯⁴

pKa = 3.35

Finally, we shall determine the pH of the solution.

pKa = 3.35

Concentration of HNO₂, [HNO₂] = 0.210 M

Concentration of KNO₂, [KNO₂] = 0.290 M

pH =?

The pH of the solution can obtain by using the Henderson-Hasselbach equation as illustrated below:

pH = pKa + log [base] / [acid]

pH = pKa+ log [NO₂⁻] / [HNO₂]

pH = 3.35 + log (0.290 / 0.210)

pH = 3.49

Thus, the pH of the solution is 3.49

Learn more: https://brainly.com/question/15911738

When NaOH is added to water, the (OH) = 0.04 M. What is the [H30*]?

What is the PH of the solution?

Answers

Answer:

[H₃O⁺] = 2.5 × 10⁻¹³ M

pH = 12.6

Explanation:

Step 1: Given data

Concentration of OH⁻: 0.04 M

Step 2: Calculate the concentration of H₃O⁺

Let's consider the self-ionization of water reaction.

2 H₂O(l) ⇄ OH⁻(aq) + H₃O⁺(aq)

The ionic product of water is:

Kw = [OH⁻] × [H₃O⁺] = 10⁻¹⁴

[H₃O⁺] = 10⁻¹⁴ / [OH⁻]

[H₃O⁺] = 10⁻¹⁴ / 0.04

[H₃O⁺] = 2.5 × 10⁻¹³ M

Step 3: Calculate the pH

The pH is:

pH = -log [H₃O⁺] = -log 2.5 × 10⁻¹³ = 12.6

The half-life of radium-226 is 1620 years. What percentage of a given amount of the radium will remain after 900 years

Answers

Answer:

68%

Explanation:

Since we need a percentage we can use any number we want for our initial value.

5(1/2)^900/1620 = 3.40

(3.40 / 5)*100 = 68%

To make sure lets use a different initial amount

1(1/2)^900/1620 = 0.68

(0.68/1) * 100 = 68%

The percentage of radium that will remain after 900 years is 68%.

To solve this question, we'll assume the initial amount of radium-226 to be 1.

Now, we shall proceed to obtaining the percentage of radium-226 that will after 900 years. This can be obtained as illustrated below:

Step 1

Determination of the number of half-lives that has elapsed.

Half-life (t½) = 1620 years

Time (t) = 900 years

Number of half-lives (n) =?

[tex]n = \frac{t}{t_{1/2}}\\\\n = \frac{900}{1620}\\\\n = \frac{5}{9}[/tex]

Step 2:

Determination of the amount remaining

Initial amount (N₀) = 1

Number of half-lives (n) = 5/9

Amount remaining (N) =?

[tex]N = \frac{N_{0} }{2^{n}}\\\\N = \frac{1}{2^{5/9}}[/tex]

N = 0.68

Step 3

Determination of the percentage remaining.

Initial amount (N₀) = 1

Amount remaining (N) = 0.68

Percentage remaining =?

Percentage remaining = N/N₀ × 100

Percentage remaining = 0.68/1 × 100

Percentage remaining = 68%

Therefore, the percentage amount of radium-226 that remains after 900 years is 68%

Learn more: https://brainly.com/question/10406952

Other Questions
Average of 44.64, 43.45, 42.79, 42.28 The length of a rectangle is twice its width.If the area of the rectangle is 200 yd?, find its perimeter. the formula for a trapezoid is A= 1/2h(b1+b2) which equations are equivalent to the formula The number of dogs a family has and the amount of floor cleaner used are known to have a strong positive association. Jaylen concluded that the number of dogs causes an increase in floor cleaner usage. Is Jaylen's conclusion valid? Explain. which of the following require all the states to return fugitives slaves to their owners New York City is a popular feild trip destination. This year the seniorclass at High School A and the senior class at High School B bothplanned trips there. The senior class at High School A rented and filled8 vans and 4 buses with 220 students. High School B rented and filled 12 vans and 4 buses with 228 students. Every van had the samenumber of students in it as did the buses. How many students can avan carry? How many students can a bus carry? Which of the following characteristics of living things is very important for a group or organisms, but not a single organism?A: Living things respond to their environment.B: Living things are made up of units called cells.C: Living things maintain internal balance.D: Living things reproduce For the set of ionic compounds, LiCl, AgCl, PbCl2, choose the correct characterization of their solubilities in water from the response list. Group of answer choices All three salts are soluble. None of the three salts are soluble. Two of the three salts are soluble. One of the three salts is soluble. b lng c khng ui c c im c bn l CAN SOMEONE HELP ME Effects of rays and chemicals on cell Jill has two dimes she is going to use to perform a probability experiment. What is the theoretical probability that at least one of the two coins will turn upheads?75%50% This is the new one! Please help Im so lost Find the radius, diameter, circumference and the approximate area for the circle in the image attached. To find the approximate area, please use 3.14 for . SHOW WORK! Which of these is a mineral?O A. MagnesiumO B. FatO C. FolateO D. Vitamin B I need hellpppp Which area is not protected by most of homeowners insurance? Select the correct answerWhat should healthcare professionals do when discussing a patient's condition with the patient or the patient's family?Ause medical terminologyBuse simple languageCshare the patient's chartDcommunicate in writing only Point R is at (3, 1.3) and Point T is at (3, 2.4) on a coordinate grid. The distance between the two points is _____. There are no answer choices just that question. a vegetable garden and he's around the path of seemed like a square that together are 10 ft wide. The path is 2 feet wide. Find the total area of the vegetable garden and path What does an AED do to restart the heart? Which of the following correlation values represents a perfect linear relationship between two quantitativevariables? Select all that apply.A. 0B. 9c. -1D. 1E. .5