One charge is fixed q1 = 5 µC at the origin in a coordinate system, a second charge q2 = -3.2 µC the other is at a distance of x = 90 m from the origin.

What is the potential energy of this pair of charges?

Answers

Answer 1

Answer:

5.4uC

Explanation:


Related Questions

Sammy is 5 feet and 5.3 inches tall.tall.what is sammy's height in metres?

Answers

Answer:

65.3

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

Answer:

It will be 》》》》1.664716m

Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consider points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?

Answers

Answer:

a

    [tex]z= 2.5 \ m[/tex]

b

   [tex]z = (1 \ m , 4 \ m )[/tex]

Explanation:

From the question we are told that

     Their distance apart is  [tex]d = 5.00 \ m[/tex]

      The  wavelength of each source wave [tex]\lambda = 6.0 \ m[/tex]

Let the distance from source A  where the construct interference occurred be z

Generally the path difference for constructive interference is

              [tex]z - (d-z) = m \lambda[/tex]

Now given that we are considering just the straight line (i.e  points along the line connecting the two sources ) then the order of the maxima m =  0

  so

        [tex]z - (5-z) = 0[/tex]

=>     [tex]2 z - 5 = 0[/tex]

=>     [tex]z= 2.5 \ m[/tex]

Generally the path difference for destructive  interference is

           [tex]|z-(d-z)| = (2m + 1)\frac{\lambda}{2}[/tex]

=>         [tex]|2z - d |= (0 + 1)\frac{\lambda}{2}[/tex]

=>        [tex]|2z - d| =\frac{\lambda}{2}[/tex]

substituting values

          [tex]|2z - 5| =\frac{6}{2}[/tex]

=>      [tex]z = \frac{5 \pm 3}{2}[/tex]

So  

      [tex]z = \frac{5 + 3}{2}[/tex]

      [tex]z = 4\ m[/tex]

and

      [tex]z = \frac{ 5 -3 }{2}[/tex]

=>   [tex]z = 1 \ m[/tex]

=>    [tex]z = (1 \ m , 4 \ m )[/tex]

Two parallel slits are illuminated with monochromatic light of wavelength 567 nm. An interference pattern is formed on a screen some distance from the slits, and the fourth dark band is located 1.83 cm from the central bright band on the screen. (a) What is the path length difference corresponding to the fourth dark band? (b) What is the distance on the screen between the central bright band and the first bright band on either side of the central band? (Hint: The angle to the fourth dark band and the angle to the first bright band are small enough that tan θ ≈ sin θ.)

Answers

Answer:

a)1984.5nm

b)523mm

Explanation:

A)A destructive interference can be explained as when the phase shifting between the waves is analysed by the path lenght difference

θ=(m+0.5)λ where m= 1,2.3....

Where given from the question the 4th dark Fringe which will take place at m= 3

θ=7/2y

Where y= 567nm

= 7/2(567)=1984.5nm

But

B)tan θ ≈ y/d

And sinθ = mλ/d

y=mλd when m= 1 which is the first bright we have

Then y=(1× 567.D)/d

But the distance from Central to the 4th dark Fringe is 1.83cm then

y= 7λD/2d= 1.83cm

D/d=(2)×(1.83×10^-2)/(7×567×10^-9)

=92221.5

y= (567×10^-9)× (92221.5)

=0.00523m

Therefore, the distance between the first and center is y1-y0= 523mm

At what frequency should a 200-turn, flat coil of cross sectional area of 300 cm2 be rotated in a uniform 30-mT magnetic field to have a maximum value of the induced emf equal to 8.0 V

Answers

Answer:

The frequency of the coil is 7.07 Hz

Explanation:

Given;

number of turns of the coil, 200 turn

cross sectional area of the coil, A = 300 cm² = 0.03 m²

magnitude of the magnetic field, B = 30 mT = 0.03 T

Maximum value of the induced emf, E = 8 V

The maximum induced emf in the coil is given by;

E = NBAω

Where;

ω is angular frequency = 2πf

E = NBA(2πf)

f = E / 2πNBA

f = (8) / (2π x 200 x 0.03 x 0.03)

f = 7.07 Hz

Therefore, the frequency of the coil is 7.07 Hz

In state-of-the-art vacuum systems, pressures as low as 1.00 10-9 Pa are being attained. Calculate the number of molecules in a 1.90-m3 vessel at this pressure and a temperature of 28.0°C. molecules

Answers

Answer:

The number of molecules is 4.574 x 10¹¹ Molecules

Explanation:

Given;

pressure in the vacuum system, P = 1 x 10⁻⁹ Pa

volume of the vessel, V = 1.9 m³

temperature of the system, T = 28°C = 301 K

Apply ideal gas law;

[tex]PV= nRT = NK_BT[/tex]

Where;

n is the number of gas moles

R is ideal gas constant = 8.314 J / mol.K

[tex]K_B[/tex] is Boltzmann's constant, = 1.38 x 10⁻²³ J/K

N is number of gas molecules

N = (PV) / ([tex]K_B[/tex]T)

N = (1 x 10⁻⁹ X 1.9) / ( 1.38 x 10⁻²³  X 301)

N = 4.574 x 10¹¹ Molecules

Therefore, the number of molecules is 4.574 x 10¹¹ Molecules

1) Un objeto realiza un movimiento circular uniforme en una circunferencia de 10 metros de diámetro y efectúa 20 vueltas por minuto. Se pide hallar:
a) El periodo.
b) La frecuencia en Hertz.
c) La velocidad tangencial. d) La velocidad angular.
e) La aceleración centrípeta.

Answers

Answer:

A RECIPE NEEDS A COMBINED WEIGHT OF 720G OF FLOUR AND SUGAR. IF THE RECIPE NEEDS 5TIME FLOUR THAN SUGAR,HOW MUCH OF EACH IS NEEDED

A woman was told in 2020 that she had exactly 15 years to live. If she travels away from the Earth at 0.8 c and then returns at the same speed, the last New Year's Day the doctors expect her to celebrate is:

Answers

Answer:

2035

Explanation:

The doctor does not travel with the woman, and therefore, he won't experience any relativistic effect on his time. The doctor will judge time by the time here on earth. Technically, the last new year's day the doctor, who is here on earth, would expect the woman to celebrate will be in 2020 + 15 years = 2035

Two instruments produce a beat frequency of 5 Hz. If one has a frequency of 264 Hz, what could be the frequency of the other instrument

Answers

Answer:

259 Hz or 269 Hz

Explanation:

Beat: This is the phenomenon obtained when two notes of nearly equal frequency are sounded together. The S.I unit of beat is Hertz (Hz).

From the question,

Beat = f₂-f₁................ Equation 1

Note: The frequency of the other instrument is either f₁ or f₂.

If the unknown instrument's frequency is f₁,

Then,

f₁ = f₂-beat............ equation 2

Given: f₂ = 264 Hz, Beat = 5 Hz

Substitute into equation 2

f₁ = 264-5

f₁ = 259 Hz.

But if the unknown frequency is f₂,

Then,

f₂ = f₁+Beat................. Equation 3

f₂ = 264+5

f₂ = 269 Hz.

Hence the beat could be 259 Hz or 269 Hz

The velocity function (in meters per second) is given for a particle moving along a line. Find the total distance traveled by the particle during the given interval

Answers

Answer:

s=((vf+vi)/2)t vf is final velocity and vi is initial velocity


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

g Calculate the maximum wavelength of light that will cause the photoelectric effect for potassium. Potassium has work function 2.29 eV = 3.67 x 10–19 J.

Answers

Answer:

λ = 5.4196 10⁻⁷m,  λ = 541.96 nm    this is green ligh

Explanation:

The photoelectric effect was explained by Eintein assuming that the light was made up of particles called photons and these collided with the electrons taking them out of the material.

 

                     K = h f -Ф

where K is the kinetic energy of the ejected electrons, hf is the energy of the light quanta and fi is the work function of the material.

The speed of light is related to wavelength and frequency

                   c = λ / f

                  f = c /λ

we substitute

                K = h c / λ - Φ

for the case that they ask us the kinetic energy of the electons is zero (K = 0)

                 h c / λ = Ф

                λ = h c / Ф

we calculate

                 λ = 6.63 10⁻³⁴  3 10⁸ / 3.67 10⁻¹⁸

                 λ = 5.4196 10⁻⁷m

let's take nm

                lam = 541.96 nm

this is green light

A 0.500 H inductor is connected in series with a 93 Ω resistor and an ac source. The voltage across the inductor is V = −(11.0V)sin[(500rad/s)t]. What is the voltage across the resistor at 2.09 x 10-3 s? Group of answer choices 205 V 515 V 636 V 542 V

Answers

Answer:

205 V

V[tex]_{R}[/tex] = 2.05 V

Explanation:

L = Inductance in Henries, (H)  = 0.500 H

resistor is of 93 Ω so R = 93 Ω

The voltage across the inductor is

[tex]V_{L} = - IwLsin(wt)[/tex]

w = 500 rad/s

IwL = 11.0 V

Current:

I = 11.0 V / wL

 = 11.0 V / 500 rad/s (0.500 H)

 = 11.0 / 250

I = 0.044 A

Now

V[tex]_{R}[/tex] = IR

    = (0.044 A) (93 Ω)

V[tex]_{R}[/tex] = 4.092 V

Deriving formula for voltage across the resistor

The derivative of sin is cos

V[tex]_{R}[/tex] = V[tex]_{R}[/tex] cos (wt)

Putting V[tex]_{R}[/tex] = 4.092 V and w = 500 rad/s

V[tex]_{R}[/tex] = V[tex]_{R}[/tex] cos (wt)

    = (4.092 V) (cos(500 rad/s )t)

So the voltage across the resistor at 2.09 x 10-3 s is which means

t = 2.09 x 10⁻³

V[tex]_{R}[/tex] = (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))

    =  (4.092 V) (cos (500 rads/s)(0.00209))

    = (4.092 V) (cos(1.045))

    = (4.092 V)(0.501902)

    = 2.053783

V[tex]_{R}[/tex] = 2.05 V

A neutron star has a mass of between 1.4-2.8 solar masses compressed to the size of:
A. Earth
B. The state of Oregon
C. North America
D. An average city

Answers

The correct answer is D. An average city

Explanation:

A neutron star differs from others due to its massive density, this means a lot of matter is compressed in a small area. Indeed, neutron stars have a mass of around 1.4 to 2.8 times the mass of the sun. But these are considerably small as they only measure around 20 kilometers, which is the size of an average city. Additionally, neutron stars are this dense because they are the result of a regular star exploding, which leads to a super-dense core, or neutron star. In this context, the mass of a neutron star is compressed to the size of an average city.

Water flows at 0.00027 m3/s through a 10-m long garden hose lying on the ground, with a radius of 0.01 m. Water has a viscosity of 1 mPa.s What is the magnitude of gauge pressure in Pa of the water entering the hose

Answers

Answer:

The gauge pressure is  [tex]P = 687.4 \ Pa[/tex]

Explanation:

From the question we are told that

    The rate of flow is  [tex]Q = 0.00027 m^3 /s[/tex]

      The height is h  =  10 m

      The radius is  r =  0.01 m

     The  viscosity is  [tex]\eta = 1mPa \cdot s = 1 *10^{-3} \ Pa\cdot s[/tex]

       

Generally the gauge pressure according to Poiseuille's equation  is mathematically represented as  

               [tex]P = 8 \pi \eta * \frac{L * v }{ A}[/tex]

Here v is the velocity of the water which is mathematically represented according to continuity equation as

             [tex]v = \frac{Q}{A }[/tex]

Where A is the cross-sectional area which is mathematically represented as

            [tex]A = \pi r^2[/tex]

substituting values

          [tex]A = 3.142 *(0.01)^2[/tex]

           [tex]A = 3.142 *10^{-4} \ m^2[/tex]

So

      [tex]v = \frac{ 0.00027}{3.142*10^{-4}}[/tex]

       [tex]v = 0.8593 \ m/s[/tex]

So

       [tex]P = 8 * 3.142 * 1.0*10^{-3}* \frac{10 * 0.8593 }{ 3.142*10^{-4}}[/tex]

       [tex]P = 687.4 \ Pa[/tex]

When light travels from one medium to another with a different index of refraction, how is the light's frequency and wavelength affected

Answers

Answer:

The frequency does not change, but the wavelength does

Explanation:

Here are the options

A. When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, the frequency changes and the wavelength does not.

B. The frequency does change, but the wavelength remains unchanged.

C. Both the frequency and wavelength change.

D. When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, neither the wavelength nor the frequency changes.

E. The frequency does not change, but its wavelength does.

When light goes through one medium to the next, the frequency doesn't really change seeing as frequency is dependent on wavelength and light wave velocity. And when the wavelength shifts from one medium to the next.

[tex]n= \frac{C}{V} \ and\ \frac{\lambda_o}{\lambda_m}[/tex]

where [tex]\lambda_o[/tex] indicates wavelength in vacuum

[tex]\lambda_m[/tex] indicates wavelength in medium

n indicates refractive index

v indicates velocity of light wave

c indicates velocity of light

And wavelength is medium-dependent. Frequency Here = v[tex]\lambda[/tex] and shift in wavelength and velocity, not shifts in overall frequency.

Therefore the correct option is E

Warm blooded animals are homeothermic; that is, they maintain an approximately constant body temperature. (Forhumans it's about 37 oC.) When they are in an environment that is below their optimum temperature, they use energy derived from chemical reactions within their bodies to warm them up. One of the ways that animals lose energy to their environment is through radiation. Every object emits electromagnetic radiation that depends on its temperature. For very hot objects like the sun, that radiation is visible light. For cooler objects, like a house or a person, that radiation is in the infrared and is invisible. Nonetheless, it still carries energy. Other ways that energy is lost by a warm animal to a cool environment includes conduction (direct touching of a cooler object) and convection (cooler air moving and carrying thermal energy away). See Heat Transfer for a discussion of all three.

For this problem, we'll just consider how much energy an animal needs to burn (obtain from internal chemical reactions) in order to stay warm just from radiation losses. The rate at which an object loses energy through radiation is given by the Stefan-Boltzmann equation:

Rate of energy loss = AεσT4



where T is the absolute (Kelvin) temperature, A is the area of the object, ε is the emissivity (unitless and =1 for a perfect emitter, less for anything else), and σ is the Stefan-Boltzmann constant:

σ = 5.67 x 10-8 J/(s m2 K4)



Consider a patient trying to sleep naked in a cool room (55 oF = 13 oC). Assume that the person being considered is a perfect emitter and absorber of radiation (ε = 1), has a surface area of about 2.5 m2, and a mass of 80 kg.

a. A person emits thermal radiation at a rate corresponding to a temperature of 37 oC and absorbs radiation at a rate (from the air and walls) corresponding to a temperature of 13 oC. Calculate the individual's net rate of energy loss due to radiation (in Watts = Joules/second).
net rate of energy loss = Watts

b. Assume the patient produces no energy to keep warm. If they have a specific heat about equal to that of water (1 Cal/kg-oC) how much would their temperature fall in one hour? (1 Cal = 1kcal = 103 cal)
ΔT = oC

c. Given that the energy density of fat is about 9 Cal/g, how many grams of fat would the person have to utilize to maintain their body temperature in that environment for one hour?
amount of fat needed = g

Answers

Answer:

a) 360.7 J/s

b) 16.23 °C

c) 34.48 g

Explanation:

The mass of the person = 80 kg

The person is a perfect emitter, ε = 1

surface area of the person = 2.5 m^2

a) If he emits radiation at 37 °C, [tex]T_{out}[/tex] = 37 + 273 = 310 K

and receives radiation at 13 °C, [tex]T_{in}[/tex] = 13 + 273 = 286 K

Rate of energy loss E = Aεσ([tex]T^{4} _{out}[/tex] - [tex]T^{4} _{in}[/tex] )

where σ = 5.67 x 10^-8 J/(s m^2 K^4)

substituting values, we have

E = 2.5 x 1 x 5.67 x 10^-8 x ([tex]310^{4}[/tex] - [tex]286^{4}[/tex]) = 360.7 J/s

b) If they have specific heat about equal to that of water = 1 Cal/kg-°C

but 1 Cal = 1 kcal = 10^3 cal

specific heat of person is therefore = 10^3 cal/kg-°C

heat loss = 360.7 J/s = 360.7 x 3600 = 1298520 J/hr

heat lost in 1 hour = 1 x 1298520 = 1298520 J

This heat lost = mcΔT

where ΔT is the temperature fall

m is the mass

c is the specific heat equivalent to that of water

the specific heat is then = 10^3 cal/kg-°C

equating, we have

1298520 = 80 x 10^3 x ΔT

1298520 = 80000ΔT

ΔT = 1298520/80000 = 16.23 °C

c) 1298520 J = 1298520/4184 = 310.35 Cal

density of fat = 9 Cal/g

gram of fat = 310.35/9 = 34.48 g

beam of white light goes from air into water at an incident angle of 58.0°. At what angles are the red (660 nm) and blue (470 nm) parts of the light refracted? (Enter your answer to at least one decimal place.) red ° blue °

Answers

Answer:

For red light= 39.7°

Blue light 39.2°

Explanation:

Given that refractive index for red light is 1.33 and that of blue light is 1.342

So angle of refraction for red light will be

Sinစi/ (sinစ2) =( nw)r/ ni

Sin 58° x 1.000293/1.33. =( sinစ2)r

0.64= sinစ2r

Theta2r = 39.7°

For blue light

Sinစi/ (sinစ2) =( nw)b/ ni

Sin 58° x 1.000293/1.342 =( sinစ2)b

0.632= sinစ2r

Theta2b= 39.19°

What happens when a ray of light enters a glass slab ?​

Answers

Explanation:

then the

speed decreases

Answer:

It gets refracted,

Explanation:

Because i did a couple different searches.

A microwave oven operates at 2.4 GHz with an intensity inside the oven of 2300 W/m2 . Part A What is the amplitude of the oscillating electric field

Answers

Answer:

The amplitude of the oscillating electric field is 1316.96 N/C

Explanation:

Given;

frequency of the wave, f = 2.4 Hz

intensity of the wave, I = 2300 W/m²

Amplitude of oscillating magnetic field is given by;

[tex]B_o = \sqrt{\frac{2\mu_o I}{c} }[/tex]

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

I is intensity of wave

c is speed of light = 3 x 10⁸ m/s

[tex]B_o = \sqrt{\frac{2*4\pi *10^{-7}*2300}{3*10^8} } \\\\B_o = 4.3899 *10^{-6} \ T[/tex]

The amplitude of the oscillating electric field is given by;

E₀ = cB₀

E₀ = 3 x 10⁸ x 4.3899 x 10⁻⁶

E₀ = 1316.96 N/C

Therefore, the amplitude of the oscillating electric field is 1316.96 N/C

Two identical trucks have mass 5500 kg when empty, and the maximum permissible load for each is 8000 kg. The first truck, carrying a 3900 kg, is at rest. The second truck plows into it at 64 km/h, and the pair moves away at 44 km/h. As an expert witnes, you're asked to determine whether the second truck was overloaded. What do you report? Yes the truck is overloaded, or no, the truck is not overloaded?

Answers

Answer:

no, the truck is not overloaded

Explanation:

The computation is shown below;

Let us assume the mass of the loan in the second truck be M

So, the equation is as follows

{(Mass + M) × second truck × 1000 ÷ 3,600} = {(Mass + M + mass + first truck) × Pair moves away  × 1,000 ÷ 3,600}

{(5500 + M) × 64 × 1,000 ÷ 3,600 = {(5,500 + M + 5,500 + 3,900) × 44 × 1,000 ÷ 3,600}

(5500 + M) × 64 = (14,900 + M) × 44

352,000 + 64 M = 655,600 + 44 M

After solving this

M = 15,180 kg

Therefore the second truck is not overloaded

Select from the following for the next two questions:
A virtual, inverted and smaller than the object
B real, inverted and smaller than the object
C virtual, upright and smaller than the object
D real, upright and larger than the object
E virtual, upright and larger than the object
F real, inverted and larger than the object
G virtual, inverted and larger than the object
H real, upright and smaller than the object
An object is placed 46.9 cm away from a converging lens. The lens has a focal length of 10.0 cm. Select the statement from the list above which best describes the image an objesthse place 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm. Select the statement from the An object is placed 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm. Select the statement from the list above which best describes the image.

Answers

Answer:

Explanation:

1 )

An object is placed 46.9 cm away from a converging lens. The lens has a focal length of 10.0 cm.

Since the object is placed at a distance more than twice the focal length , its image will be inverted , real  and will be of the size less than the size of object . So option B is applied .

B)  real, inverted and smaller than the object.

2 )

An object is placed 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm.

The object is placed at a point beyond its radius of curvature, its image will be formed at a point between f and C   or between focal point and centre of curvature . Its size will be smaller than size of object and it will be real and inverted .

B)  real, inverted and smaller than the object.

A train is approaching you at very high speed as you stand next to the tracks. Just as an observer on the train passes you, you both begin to play the same recorded version of a Beethoven symphony on identical MP3 players. (a) According to you, whose MP3 player finishes the symphony first?
A. your player,
B. the observer's player,
C. both finish at the same time. (b) According to the observer on the train, whose MP3 player finishes the symphony first?
A. your player,
B. the observer's player,
C. both finish at the same time. (c) Whose MP3 player actually finishes the symphony first?
A. your player,
B. the observer's player,
C. each observer measures his symphony as finishing first,
D. each observer measures the other's symphony as finishing first.

Answers

Answer:

a) Your player

b) Observer's player

c) Each measures their own first

Explanation:

Because given problem is having relative velocity to each other. The person sitting on the train is moving with a very high speed relative to the person standing next to the track.

In this case, the clock situated in the train will be running slow with respect to the stationary frame of reference

A student holds a bike wheel and starts it spinning with an initial angular speed of 7.0 rotations per second. The wheel is subject to some friction, so it gradually slows down.

In the 10.0 s period following the inital spin, the bike wheel undergoes 60.0 complete rotations. Assuming the frictional torque remains constant, how much more time Δ????s will it take the bike wheel to come to a complete stop?

The bike wheel has a mass of 0.625 kg0.625 kg and a radius of 0.315 m0.315 m. If all the mass of the wheel is assumed to be located on the rim, find the magnitude of the frictional torque ????fτf that was acting on the spinning wheel.

Answers

Answer:

a)   Δt = 24.96 s , b)  τ = 0.078 N m

Explanation:

This is a rotational kinematics exercise

        θ = w₀ t - ½ α t²

Let's reduce the magnitudes the SI system

       θ = 60 rev (2π rad / 1 rev) = 376.99 rad

       w₀ = 7.0 rot / s (2π rad / 1 rpt) = 43.98 rad / s

       

      α = (w₀ t - θ) 2 / t²

let's calculate the annular acceleration

      α = (43.98 10 - 376.99) 2/10²

      α = 1,258 rad / s²

Let's find the time it takes to reach zero angular velocity (w = 0)

        w = w₀ - alf t

         t = (w₀ - 0) / α

         t = 43.98 / 1.258

         t = 34.96 s

this is the total time, the time remaining is

         Δt = t-10

         Δt = 24.96 s

To find the braking torque, we use Newton's law for angular motion

        τ = I α

the moment of inertia of a circular ring is

       I = M r²

we substitute

         τ = M r² α

we calculate

        τ = 0.625  0.315²  1.258

        τ = 0.078 N m

The total time taken by the wheel to come to rest is 25.18 s and the magnitude of the frictional torque is 25.18 N-m.

Given data:

The initial angular speed of wheel is, [tex]\omega = 7.0 \;\rm rps[/tex]   (rps means rotation per second).

The time interval is, t' = 10.0 s.

The number of rotations made by wheel is, n = 60.0.

The mass of bike wheel is, m = 0.625 kg.

The radius of wheel is, r = 0.315 m.

The problem is based on rotational kinematics. So, apply the second rotational equation of motion as,

[tex]\theta = \omega t-\dfrac{1}{2} \alpha t'^{2}[/tex]

Here, [tex]\theta[/tex] is the angular displacement, and its value is,

[tex]\theta =2\pi \times 60\\\\\theta = 376.99 \;\rm rad[/tex]

And, angular speed is,

[tex]\omega = 2\pi n\\\omega = 2\pi \times 7\\\omega = 43.98 \;\rm rad/s[/tex]

Solving as,

[tex]376.99 = 43.98 \times 10-\dfrac{1}{2} \alpha \times 10^{2}\\\\\alpha = 1.25 \;\rm rad/s^{2}[/tex]

Apply the first rotational equation of motion to obtain the value of time to reach zero final velocity.

[tex]\omega' = \omega - \alpha t\\\\0 = 43.98 - 1.25 \times t\\\\t = 35.18 \;\rm s[/tex]

Then total time is,

T = t - t'

T = 35.18 - 10

T = 25.18 s

Now, use the standard formula to obtain the value of braking torque as,

[tex]T = m r^{2} \alpha\\\\T = 0.625 \times (0.315)^{2} \times 1.25\\\\T = 0.0775 \;\rm Nm[/tex]

Thus, we can conclude that the total time taken by the wheel to come to rest is 25.18 s and the magnitude of the frictional torque is 25.18 N-m.

Learn more about the rotational motion here:

https://brainly.com/question/1388042

if an object weighs 550 n and the area is 1 cube​

Answers

12 km is the answer thank me later

1. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling without slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height
2. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling with slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height

Answers

Answer:

The hoop

Explanation:

Because it has a smaller calculated inertia of 2/3mr² compares to the disc

An object is placed in a room where the temperature is 20 degrees C. The temperature of the object drops by 5 degrees C in 4 minutes and by 7 degrees C in 8 minutes. What was the temperature of the object when it was initially placed in the room

Answers

Answer:

28.3°C

Explanation:

Using

T(t) = (T(0) - 20)*(e^(-k*t)) + 20

for some positive number k, and some initial temperature T(0).

Boundary conditions:

T(4) = T(0) - 5 _______ (i)

T(8) = T(0) - 7 _______ (ii)

==> solving for T(0) and k :

(i):

(T(0) - 20)*(e^(-k*4)) + 20 = T(0) - 5 ==>

(T(0) - 20)*(e^(-k*4)) = T(0) - 20 - 5

(T(0) - 20)*(e^(-k*4)) = (T(0) - 20) - 5

5 = (T(0) - 20) - (T(0) - 20)*(e^(-k*4))

5 = (T(0) - 20) * ( 1 - e^(-k*4) )

(ii):

(T(0) - 20)*(e^(-k*8)) + 20 = T(0) - 7

(T(0) - 20)*(e^(-k*8)) = (T(0) - 20) - 7

7 = (T(0) - 20) - (T(0) - 20)*(e^(-k*8))

7 = (T(0) - 20) * (1 - e^(-k*8))

In both results, subsitute x = e^(-4k) and C = (T(0) - 20)

(i): 5 = C * (1 - x)

(ii): 7 = C * (1 - x^2) = C * (1-x)*(1+x)

Substitute C*(1-x) from (i) into (ii):

(ii): 7 = 5*(1+x) ==> (1+x) = 7/5 ==> x = 2/5

back into (i):

(i): 5 = C * (1 - 2/5) ==> 5 = C * 3/5 ==> C = 25/3

C = T(0) - 20 ==>

T(0) = C + 20 = 25/3 + 20 = 25/3 + 60/3 = 85/3

= 28.3°C

The heat of fusion of water is 79.5 cal/g. This means 79.5 cal of energy are required to:_________
A) raise the temperature of 1 g of water by 1K
B) turn 1 g of water to steam .
C) raise the temperature of 1 g of ice by 1 K .
D) melt 1 g of ice .
E) increase the internal energy of 1 g of water by 1 J .

Answers

Answer:

D) melt 1 g of ice

Explanation:

Heat of fusion is the energy required to change the state of a substance from solid state to liquid state at a constant pressure.

Heat of fusion of water occurs when solid ice acquires energy and turn into liquid water through a process known as melting.

Thus, if the heat of fusion of water is 79.5 cal/g, it means 79.5 cal of energy are required to melt 1 g of ice.

D) melt 1 g of ice

which objects would have a greater gravitational force between them, Objects A and B, or Objects B and C

Answers

Answer:

Objects that are closer together have a stronger force of gravity between them.

Explanation:

For example, the moon is closer to Earth than it is to the more massive sun, so the force of gravity is greater between the moon and Earth than between the moon and the sun.

A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x axis at 37 m/s in the positive direction. The second, with mass 22 g , moves along the y axis at 34 m/s in the positive direction. Find the velocity of third piece.

Answers

Answer:

Explanation:

We shall apply conservation of momentum law in vector form to solve the problem .

Initial momentum = 0

momentum of 12 g piece

= .012 x 37 i since it moves along x axis .

= .444 i

momentum of 22 g

= .022 x 34 j

= .748 j

Let momentum of third piece = p

total momentum

= p + .444 i + .748 j

so

applying conservation law of momentum

p + .444 i + .748 j  = 0

p = - .444 i -  .748 j  

magnitude of p

= √ ( .444² + .748² )

= .87 kg m /s

mass of third piece = 58 - ( 12 + 22 )

= 24 g = .024 kg

if v be its velocity

.024 v = .87

v = 36.25 m / s .

In a front-end collision, a 1500 kg car with shock-absorbing bumpers can withstand a maximumforce of 80 000 N before damage occurs. If the maximum speed for a non-damaging collision is4.0 km/h, by how much must the bumper be able to move relative to the car

Answers

Answer:

The bumper will be able to move by 0.01155m.

Explanation:

The magnitude of deceleration of the car in the front end collision.

[tex]a = \frac{F_m}{m} \\[/tex]

[tex]a = \frac{80000}{1500} \\[/tex]

[tex]a = 53.33[/tex]

This is the deceleration of the car that is generated to stop due to a front end collision.

4 km/h = 1.11 m/s

Now, the initial speed of the bumper in the relation of car, Vi = 0

Now, the initial speed of the bumper in the relation of car, Vf = 1.11 m/s

Use the below equation:

[tex]s = \frac{(Intitial \ speed)^2 – (Final \ speed)^2}{2a} \\[/tex]

[tex]s = \frac{(1.11)^2 – (0)}{2 \times 53.33} \\[/tex]

[tex]s = 0.01155 \\[/tex]

Thus, the bumper can move relative to the car is 0.01155 m .

Other Questions
lowkey need help with this. Suppose the real interest rate is 2.8%, and the inflation rate is 7%. (1) How much do you need to invest now in order to get $100 in a year? Please show two approaches to calculate the answers. (Round your final answer to two decimal places) (2) Suppose the U.S. Treasury issues 5% coupon, 3-year TIPS (Treasury Inflation-Protected Securities). What are the real cash flows on the 3-year TIPS each year? What are the nominal cash flows on the 3-years TIPS each year? (Round your final answers to two decimal places) What was the most potent weapon used by the British against the Indians?gunsdiseasedogstea Why did Ted Johnson write paragraph 3 in the letter? jodi has $8,525 in her savings account earning 1.8% annually. how much is in jodis account after 8 years? round answer to the nearest cent. BRAINLIEST, THANKS AND 5 STARS IF ANSWERED BOTH CORRECTLY. What is the 7th term in this geometric sequence? 3, 12, 48, 192.. ---------- What is the ratio (multiplier) of the following geometric sequence? 4, 2, 1, 0.5 Cite algumas medidas tomadas por Getlio Vargas no incio de seu mandato e explique de que maneira elas culminaram na Revoluo Constitucionalista de 1932 Simon...( to have) two rabbits and five goldfishes. Does 8in to 1ft reduce it or enlarge it There is a hydraulic system that by means of a 5 cm diameter plunger to which a 5 N force is applied and that force is transmitted by means of a fluid to a 1 meter diameter plunger. Determine how much force can be lifted by the 1 m diameter plunger, 1) - 234 N 2) - 800 N 3) - 636 N 4) - 600 N Geometry, please answer my question ASAP S=n/2(2a+(n-1)d). If d=5, n=13, S=585 find the value of a. Purple Panda Products Inc. is considering a project that will require $650,000 in assets. The project will be financed with 100% equity. The company faces a tax rate of 30%. Assuming that the project generates an expected EBIT (earnings before interest and taxes) of $170,000, then Purple Pandas anticipated ROE (return on equity) for the project will be: a. 14.65% b. 18.31% c. 11.90% d. 10.99% Piper's Pizza sold baking equipment for $25,000. The equipment was originally purchased for $72,000, and depreciation through the date of sale totaled $51,000. What was the gain or loss on the sale of the equipment? Sale amount Less: Cost of the baking equipment Book value Which word correctly completes this sentence? Todos los das juego ftbol en la ___________ del parque. A. flor B. cancha C. fuente D. barbacoa What is an appropriate way to differentiate alphabet knowledge instruction? a. Teachers can adjust the number of letters introduced at one time. b. Teachers can make sure to avoid cumulative activities in their lessons. c. Teachers can make sure that children are engaged in multiple activities at once. d. Teachers can conduct lessons that are above the children's current level so that everyone in the class is challenged. Communication is a dynamic proces s through we convey thought or idea.it comes from the woed 'communis' What is the definition of americorps? For a data set of the pulse rates for a sample of adult females, the lowest pulse rate is 31 31 beats per minute, the mean of the listed pulse rates is x overbar x equals = 71.0 71.0 beats per minute, and their standard deviation is s equals = 12.6 12.6 beats per minute. 1984 quick summary of whole book