Tuning an Instrument. A musician tunes the C-string of her instrumeut to a fundamental frequency of 65.4 Hz. The vibrating portion of the string is 0.600 m long and has a mass of 14.4 g. (a) With what tension must the musician stretch it? (b) What percent increase in tension is needed to increase the frequency from 65.4 Hz to 73.4 Hz, corresponding to a rise in pitch from C to D?

Answers

Answer 1

(a) The tension the musician must stretch it is 147.82 N.

(b) The percent increase in tension is needed to increase the frequency is 26%.

Tension in the string

v = √T/μ

where;

v is speed of the waveT is tensionμ is mass per unit length = 0.0144 kg / 0.6 m = 0.024 kg/m

v = Fλ

in fundamental mode, v = F(2L)

v = 2FL

v = 2 x 65.4 x 0.6 = 78.48 m/s

v = √T/μ

v² = T/μ

T = μv²

T = 0.024 x (78.48)²

T = 147.82 N

When the frequency is 73.4 Hz;

v = 2FL = 2 x 73.4 x 0.6 = 88.08 m/s

T = μv²

T = (0.02)(88.08)²

T = 186.19 N

Increase in the tension

= (186.19 - 147.82)/(147.82)

= 0.26

= 0.26 x 100%

= 26 %

Thus, the tension the musician must stretch it is 147.82 N.

The percent increase in tension is needed to increase the frequency is 26%.

Learn more about tension here: https://brainly.com/question/24994188

#SPJ1


Related Questions

A block of mass
m = 2.50 kg
is pushed
d = 2.10 m
along a frictionless horizontal table by a constant applied force of magnitude
F = 14.0 N
directed at an angle
= 25.0°
below is a photo of the horizontal as shown in the figure below.

(a) Determine the work done by the applied force.
_____J

(b) Determine the work done by the normal force exerted by the table.
_____J

(c) Determine the work done by the force of gravity.
_____J

(d) Determine the work done by the net force on the block.
_____J

Answers

(a) The work done by the applied force is 26.65 J.

(b) The work done by the normal force exerted by the table is 0.

(c) The work done by the force of gravity is 0.

(d) The work done by the net force on the block is 26.65 J.

Work done by the applied force

W = Fdcosθ

W = 14 x 2.1 x cos25

W = 26.65 J

Work done by the normal force

W = Fₙd

W = mg cosθ x d

W = (2.5 x 9.8) x cos(90) x 2.1

W = 0 J

Work done force of gravity

The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.

Work done by the net force on the block

∑W = 0 + 26.65 J = 26.65 J

Thus, the work done by the applied force is 26.65 J.

The work done by the normal force exerted by the table is 0.

The work done by the force of gravity is 0.

The work done by the net force on the block is 26.65 J.

Learn more about work done here: https://brainly.com/question/8119756

#SPJ1

A crate with a mass of M = 62.5 kg is suspended by a rope from the endpoint of a uniform boom. The boom has a mass of m = 116 kg and a length of l = 7.65 m. The midpoint of the boom is supported by another rope which is horizontal and is attached to the wall as shown in the figure.
1. The boom makes an angle of θ = 57.7° with the vertical wall. Calculate the tension in the vertical rope.
2. What is the tension in the horizontal rope?

Answers

Answer:

Tension in the vertical rope: approximately [tex]613 \; {\rm N}[/tex].

Tension in the horizontal rope: approximately [tex]3.74 \times 10^{3}\; {\rm N}[/tex].

Assumption: [tex]g = 9.81\; {\rm N \cdot kg^{-1}}[/tex].

Explanation:

Since the system is not moving, the tension in the vertical rope would be equal to the weight of the crate:

[tex]\begin{aligned}\text{weight of crate} &= m\, g \\ &= 62.5\; {\rm kg} \times 9.81\; {\rm N \cdot kg^{-1}} \\ &= 613.25 \; {\rm N}\end{aligned}[/tex].

Note that [tex]\theta = 57.7^{\circ}[/tex] is the angle between the beam (the lever) and the vertical rope. The torque that this vertical rope exert on the beam would be:

[tex]\begin{aligned} \tau &= r\, F\, \sin(\theta) \\ &=(7.65\; {\rm m}) \, (613.25\; {\rm N})\, (\sin(57.7^{\circ})) \\ &\approx 3.965 \times 10^{3}\; {\rm N \cdot m} \end{aligned}[/tex].

This torque is in the clockwise direction.

The weight of the beam ([tex]m = 116\; {\rm kg}[/tex]) would be:

[tex]\begin{aligned}\text{weight of beam} &= m\, g \\ &= 116 \; {\rm kg} \times 9.81\; {\rm N \cdot kg^{-1}} \\ &= 1.138 \times 10^{3}\; {\rm N}\end{aligned}[/tex].

Note that [tex]\theta = 57.7^{\circ}[/tex] is also the angle between the beam and the direction of the (downward) gravitational pull on this. Since this beam is uniform, it would appear as if the weight of this beam is applied at the center of this beam (with a distance of [tex](7.65\; {\rm m}) / 2[/tex] from the pivot.) Thus, the torque gravitational pull exerts on this beam would be:

[tex]\begin{aligned} \tau &= r\, F\, \sin(\theta) \\ &= \genfrac{(}{)}{}{}{7.65\; {\rm m}}{2} \, (1.138 \times 10^{3}\; {\rm N})\, (\sin(57.7^{\circ})) \\ &\approx 3.679 \times 10^{3}\; {\rm N \cdot m} \end{aligned}[/tex].

This torque is also in the clockwise direction.

The tension in the horizontal rope would need to supply a torque in the counterclockwise direction. The magnitude of that torque would be approximately:

[tex]\begin{aligned} & 3.965\times 10^{3}\; {\rm N \cdot m} + 3.679\times 10^{3}\; {\rm N \cdot m} \\ \approx \; & 7.645 \times 10^{3}\; {\rm N \cdot m} \end{aligned}[/tex].

Note the angle between the direction of this tension and the beam is [tex](90^{\circ} - \theta) = 32.3^{\circ}[/tex]. This force is applied  [tex](7.65\; {\rm m}) / 2[/tex] from the pivot. Hence, achieving that torque of [tex]7.645 \times 10^{3}\; {\rm N \cdot m}[/tex] would require:

[tex]\begin{aligned} F &= \frac{\tau}{r\, \sin(90^{\circ} - \theta)} \\ &\approx \frac{7.645\times 10^{3}\; {\rm N \cdot m}}{((7.65\; {\rm m}) / 2) \times \sin(32.3^{\circ})} \\ &\approx 3.74 \times 10^{3}\; {\rm N} \end{aligned}[/tex].

A block of mass 2.60 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0500 m.

What is the elastic potential energy of the block-spring system (in J)?
_______J

If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring.
_____s/s

Answers

The elastic potential energy of the block-spring system is 0.906 J.

Velocity of the block , v = 0.83 m/s.

What is elastic potential energy?

Elastic potential energy is the energy stored in a stretched or compressed elastic material.

Elastic potential energy = Ke²/2

The elastic potential energy of the block-spring system = 725 * 0.05²/2 The elastic potential energy of the block-spring system = 0.906 J

The elastic potential energy of the spring is converted to kinetic energy of the block.

1/2 mv² = 0.906 J

where v is velocity

v = √(0.906 * 2)/2.6

v = 0.83 m/s.

In conclusion, elastic potential energy is present in compressed or stretched elastic materials.

Learn more about elastic potential energy at: https://brainly.com/question/20797227

#SPJ1

What is the Difference between accuracy and precision ?

Answers

Answer:

Accuracy measures how close results are to the true or known value. Precision, on the other hand, measures how close results are to one another.

Accuracy means the state of being accurate, without any mistakes and the results should be 100% true.

Whereas, precision means, approximately true or almost true.

Hope it help you

A first year student projected a farm business brochure to a farmer at 30 degrees to horizontal. calculate the maximum height attained by the projectile if it was launched at 400m/s​

Answers

Answer:

Maximum height = 2040 m

Explanation:

We can solve the problem using kinematics.

Consider the vertical motion of the object and use the equation:

[tex]\boxed{v^2 = u^2 + 2as}[/tex]

where:

v = final velocity      (0 m/s, because when the object is at max. height, it has no vertical velocity)

u = initial velocity    (400sin30° m/s ⇒ vertical component of 400 m/s at 30° to horizontal)

a = acceleration      (-9.81 m/s²; considering upward acceleration to be negative)

s = displacement    (? m; this represents the max. height of the object),

Substitute the values into the equation and solve for s :

[tex]0^2 = (400 sin (30 \textdegree))^2 + 2(-9.81)(s)[/tex]

⇒ [tex]2(9.81)(s) = (400 sin (30 \textdegree))^2[/tex]

⇒  [tex]s = 2040 \space\ m[/tex]     (3 s.f.)

A 67-kg skier grips a moving rope that is powered by an engine and is pulled at constant speed to the top of a 23∘ hill. The skier is pulled a distance x = 300 m along the incline and it takes 2.0 min to reach the top of the hill.
If the coefficient of kinetic friction between the snow and skis is μk = 0.10, what horsepower engine is required if 30 such skiers (max) are on the rope at one time?
Express your answer using two significant figures.

Answers

The required horsepower engine is 32 horsepower.

What is the force of the 30 skier?

The force of the 30 skiers is calculated as follows:

Force = mass * acceleration

Mass of the skiers = 30 * 67kg = 2010 kg

Net force acting on the skiers along the x-axis

Fx = mgsinθ + f  --- (1)

where f is the frictional force

The kinetic frictional force, f = μN

where

μ = The coefficient of the kinetic friction

N = normal reaction

Net force acting on the skiers along y axis, the

Fy = ma

N = mg cos θ

Substituting for N above

f = μk mg cos θ

Substituting for f in  (1)

F = mg sin θ + μk mg cos θ

F = mg(sinθ + μk cos θ)

Work done by the engine in pilling up the skiers, W = Fx

W = mg ( sinθ + μk cos θ)x

x = 300 m

W = (2010 kg) (9.81 m/s²) (sin 23° + (0.10) cos 23°) (300 m)

Work done, W = 2.86 * 10⁶ J

Time taken, t = 2.0 * 60sec = 120 s

Power = Work done/time taken

1 horsepower = 746 W

Power = 2.86 * 10⁶/ 120 * 1/746

Power = 31.9 horsepower

In conclusion, the power of the engine is the ratio of the work done and time taken.

Learn more about power and work done at: https://brainly.com/question/1634438

#SPJ1

A uniform beam of length L = 2.2 m and mass M = 49 kg has its lower end fixed to pivot at a point P on the floor, making an angle θ = 18° as shown in the diagram. A horizontal cable is attached at its upper end B to a point A on a wall. A box of the same mass M as the beam is suspended from a rope that is attached to the beam one-fourth L from its upper end.

What is the y-component Py of the force, in newtons, exerted by the pivot on the beam?

Write an expression for the tension T in the horizontal cable AB.

What is the x-component Px of the force, in newtons, exerted by the pivot on the beam?

I cannot figure part C

Answers

Hi there!

Part A.

To solve this part, all we need to do is a summation of vertical forces.

We have the following acting on the beam :
- Force of gravity (Fg, down)
- Force of tension from the rope holding the box (T, down)
- Force exerted by pivot (Py, up)

These sum to zero because the beam is not accelerating vertically.

[tex]\Sigma F = -F_g - T + P_y = 0[/tex]

[tex]P_y = F_g + T[/tex]

The tension force is equal to the box's weight because the forces on the box are balanced. Let's use values and solve.

[tex]P_y = 49(9.8) + 49(9.8) = \boxed{960.4N}[/tex]

Part B.

We must begin by doing a summation of torques. Placing the pivot point at the pivot, we have the following present:
- Force of gravity acting at the center of mass of the rod (CC, at L/2)

- The tension of the horizontal cable acting at the end of the rod (CCW, at L)

- The force of tension in the rope holding the box (CC, at 3L/4)


Since the rod is not rotating, these torques sum to zero.

The equation for torque is:
[tex]\tau = r \times F[/tex]

This is a cross-product, and you must find the lever arm (perpendicular distance between pivot and line of action of force). We will need to use trigonometry for this.

Now, let's find the torque from all three of these forces.

- Force of gravity at center:

The perpendicular distance between the force of gravity and the pivot point is the cosine with respect to the angle made with the floor.

[tex]\tau = Mg\frac{L}{2}cos(\theta) = 49(9.8)*\frac{2.2}{2} cos(18) = 502.367 Nm[/tex]

- Tension of horizontal cable:

The lever arm is the sine with respect to the angle. We will still have to solve for the value of 'T'.

[tex]\tau = TLsin\theta = T(2.2)sin(18) = 0.68T[/tex]

- Tension of rope holding box:
The tension is equal to the weight of the box since the box isn't accelerating. Thus, the torque would be:
[tex]\tau = Mg(\frac{3L}{4}) = 49(9.8)*\frac{3(2.2)}{4}cos(18) = 753.55 Nm[/tex]

Summing with clockwise torques + and counterclockwise -:
[tex]\Sigma \tau = 502.367 + 753.55 - 0.68 T = 0 \\\\1255.917 = 0.68T\\T = \boxed{1847.38 N}[/tex]

Part C.

This part is a lot easier than it seems. All we need to do is a summation of horizontal forces.

We only have two:
- The horizontal tension in the cable to the left (1847.38 N)

- The horizontal force exerted by the pivot on the beam to the right

These two balance out because there is no acceleration of the beam horizontally, so:
[tex]\Sigma F = P_x - T = 0 \\\\P_x = T\\\\P_x = \boxed{1847.38 N}[/tex]

**to the right

Answer:

a) 960.4 N

b) T= 5/4 Mg CotanΘ

c) 1847. 38

Explanation:

a) Py= 2Mg

=2(49 x 9.8)

= 960.4

b) T= (Mg x 1/2 x cos Θ + Mg x 3/4 x cos Θ) / sin Θ

T= 5/4 X Mg cotanΘ

c) T= (5/4) x (49 x 9.8) cotan (18)

T= 1847.37954

= 1847.38

What adaptation of a cactus protects it from predators? a round cactus with many spines Broad leaves Sharp spines Thick stems Yellow flowers

Answers

A round cactus with many spines is the adaptation of a cactus that protects it from predators.

A cactus, unlike other plants, has unique adaptations in its roots, leaves, and stems that allow it to flourish in hot and dry surroundings.

The one adaptation that protects the cactus from predators is spines.

A cactus does not have any parts that resemble leaves if you could look at one closely.

Instead, the leaves are transformed into spines, which protrude from the plant's tiny bumps known as areoles.

Herbivores that live in the desert may be enticed to eat the cactus. The spines prevent these predators by modifying leaves into spines.

Other than protection, Spines perform many functions like

1) Since evaporation is a problem in a desert since water is scarce, the spines prevent excessive evaporation.

2)  The spines also impede airflow and prevent evaporation by trapping air.

3) Collecting dew from the early-morning fog is another crucial job that the spines do.

The gathered dew turned into liquid water and ran down to the earth below. The plant then absorbs this water.

Hence, the adaptation of a cactus that protects it from predators is round cactus with many spines.

Learn more about Adaptation of cactus here https://brainly.com/question/12501143

#SPJ1

Question 8: Cosmology (8 points)

a. Write 3 - 4 sentences to describe the beginning of the universe according to the big bang theory, and to describe the future of the universe according to the flat model. (4 points)





b. What is cosmic background radiation? How do observations of the cosmic background radiation provide evidence to support the big bang theory? Write 2 - 3 sentences to present your response. (4 points)

Answer in complete sentences. Will mark brainiest

Answers

Big bang happened about 13.7 billion years ago in our universe.

Describe the beginning of the universe according to the big bang theory?

According to the big bang theory, about 13.7 billion years ago, an explosive expansion began, expanding our universe outwards faster than the speed of light.

Describe the future of the universe according to the flat model?

According to the flat model, the universe is infinite and will continue to expand forever because the universe is expanding.

What is cosmic background radiation?

Cosmic background radiation is a weak radio-frequency radiation that is traveling through outer space in every direction. It is the residual radiation of the big bang, when the universe was very hot.

How do observations of the cosmic background radiation provide evidence to support the big bang theory?

The Big Bang theory predicts that the early universe was a very hot place and that as it expands, the gas within it cools. Thus the universe has all over radiation which is called the “cosmic microwave background".

Learn more about big bang here: https://brainly.com/question/10865002

#SPJ1

What is the equation used to find the angle of refraction? Identify each variable. (1 point)

Answers

Answer:

pictures please

Explanation:

I need a picture so I can tell you

A thin flexible gold chain of uniform linear density has a mass of 17.1 g. It hangs between two 30.0 cm long vertical sticks (vertical axes) which are a distance of 30.0 cm apart horizontally (x-axis), as shown in the figure below which is drawn to scale.
Evaluate the magnitude of the force on the left hand pole.

Answers

The magnitude of the force on the left-hand pole of the thin flexible gold chain of uniform linear density with a mass of 17.1 and, hangs between two 30.0 cm long vertical sticks, which are a distance of 30.0 cm apart will be, 0.167N.

To find the correct answer, we have to know more about the Basic forces that acts upon a body.

What is force and which are the basic forces that acts upon a body?A push or a pull which changes or tends to change the state or rest, or motion of a body is called Force.Force is a polar vector as it has a point of application.Positive force represents repulsion and the negative force represented attraction.There are 3 main forces acting on a body, such as, weight mg, normal reaction N, and the Tension or pulling force.How to solve the problem?We have given that, the gold chain hangs between the vertical sticks of 30cm and the horizontal distance between then is 30cm.From the given data, we can find the angle  (in the free body diagram, it is given as θ).

                                    [tex]tan\alpha =\frac{30}{30}\\ \alpha =45^0[/tex]

From the free body diagram given, we can write the balanced equations of total force along y direction as,

                                 [tex]y-direction\\T_2sin\alpha =mg\\\\T_2=\frac{mg}{sin\alpha } =\frac{17.1*10^{-3}*9.8}{sin45} \\\\T_2=0.236N[/tex]

From the free body diagram given, we can write the balanced equations of total force along x direction as,

                                 [tex]x-direction\\T_1-T_2cos\alpha =0\\T_1=T_2cos\alpha \\T_1=0.236*cos45=0.167N[/tex]

Thus, we can conclude that, the magnitude of force on the left-hand pole will be 0.167N.

Learn more about the Basic forces that acts upon a body here:

brainly.com/question/28106866

#SPJ1

The force acting on the left-hand pole of a thin, flexible gold chain of uniform linear density weighing 17.1 grams that is suspended between two vertical sticks that are 30.0 cm apart will be 0.167 N in magnitude.

We need to learn more about the fundamental forces that affect a body in order to arrive at the right answer.

What exactly is force, and what are the fundamental forces that affect a body?Force is a push or a pull that modifies or tends to modify the condition, rest, or motion of a body.Given that it has a point of application, force is a polar vector.Repulsion is represented by positive force, and attraction by negative force.A body is subject to three main forces: weight mg, normal response N, and tension or pulling force.How can the issue be resolved?We have given that, the gold chain hangs between the vertical sticks of 30cm and the horizontal space between then is 30cm.We can determine the angle (shown as in the free body figure) using the information provided.

                              [tex]\alpha =tan^{-1}(\frac{30}{30})=45^0[/tex]

We may get the balanced equations for the total force in the y direction from the provided free body diagram as follows:

                                [tex]T_2sin\alpha =mg\\T_2=\frac{mg}{sin\alpha } =0.236N[/tex]

We can create the balanced equations for the total force in the x direction using the provided free body diagram:

                                     [tex]T_1=T_2cos\alpha \\T_1=0.167N[/tex]

Thus, we may infer that the force acting on the left-hand pole will have a value of 0.167N.

Learn more about the tension that acts upon a body here:

https://brainly.com/question/13052160

#SPJ1

A bowling ball of mass m = 1.1 kg is resting on a spring compressed by a distance d = 0.35 m when the spring is released. At the moment the spring reaches its equilibrium point, the ball is launched from the spring into the air in projectile motion at an angle of θ = 39° measured from the horizontal. It is observed that the ball reaches a maximum height of h = 4.4 m, measured from the initial position of the ball. Let the gravitational potential energy be zero at the initial height of the bowling ball.
a) what is the spring constant, k, in newtons per meter?

(I got that the speed of the ball after the launch is 14.76)

Answers

The spring constant, k, in newtons per meter is 1,955.9 N/m.

Speed of the ball after the launch

h = v²sin²θ/2g

v = √[(2gh)/sin²θ]

v = √[(2 x 9.8 x 4.4)/ (sin 39)²]

v = 14.76 m/s

Energy of the ball at top

E = K.E + P.E

E = ¹/₂m(v cosθ)²  +  mgh

E =  ¹/₂(1.1)(14.76 cos39)²  +  (1.1 x 9.8 x 4.4)

E = 119.8 J

Spring constant

E = ¹/₂kx²

k = 2E/x²

k = (2 x 119.8)/(0.35²)

k = 1,955.9 N/m

Thus, the spring constant, k, in newtons per meter is 1,955.9 N/m.

Learn more spring constant here: https://brainly.com/question/1968517

#SPJ1

Jane, looking for Tarzan, is running at top speed (6.0 m/s ) and grabs a vine hanging vertically from a tall tree in the jungle.
How high can she swing upward?
Express your answer to two significant figures and include the appropriate units.
Does the length of the vine affect your answer?

Answers

(a) The maximum height reached by Jane is 1.8 m.

(b) The length of the vine will affect the time of her motion, which will impact on speed and maximum height attained.

Maximum height Jane can swing

apply the principle of conservation of energy;

P.E = K.E

mgh = ¹/₂mv²

h = v²/2g

where;

v is speed of janeg is acceleration due to gravity

h = (6²)/(2 x 9.8)

h = 1.84 m

Time of motion of Jane

Assuming Jane to be in simple harmonic motion, the time of motion is calculated as;

T =  2π√(L/g)

where;

L is the length of the vine

Thus, the length of the vine will affect the time of her motion, which will impact on speed and maximum height attained.

Learn more about maximum height here: https://brainly.com/question/12446886

#SPJ1

Which element is a metalloid?

Answers

Answer:

The metalloids are located on the right side of the periodic table in a "step-like" arrangement.

All of the possible metalloids are:

boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), and polonium (Po)

A truck is carrying a refrigerator as shown in the figure. The height of the refrigerator is 158.0 cm, the width is 60.0 cm. The center of gravity of the refrigerator is 67.0 cm above the midpoint of the base.
What is the maximum acceleration the truck can have so that the refrigerator doesn't tip over? (The static friction between the truck and the refrigerator is very large.)

Answers

In order for the refrigerator not to tip over, the maximum acceleration of  1.86 m/s² must not be exceeded.

What is acceleration?

The term acceleration has to do with the rate at which velocity changes with time.

We have to take the moments at the tipping point of rotation as follows;

Clockwise moment = Anticlockwise moment

Hence;

F₂ * 1.58 m = F₁ * 0.67 m

The weight at half the width= 30 cm or 0.3 m

Height of refrigerator = 158 cm 0r 1.58 cm

Then;

m * a * 1.58 = m * 9.81 * 0.30

a = 1.86 m/s²

In order for the refrigerator not to tip over, the maximum acceleration of  1.86 m/s² must not be exceeded.

Learn more about acceleration: brainly.com/question/14344386

#SPJ1

Please show work if possible! Thank you!!
A 2.0 x 103 kg roller coaster travels around a vertical 24-m radius loop. If the coaster has a tangential speed of 18 m/s at the lowest point of the loop, what is the normal force that is exerted on the coaster by the track at this point?
a. 5.3 x 10^4 N
b. 4.7 x 10^4 N
c. 3.0 x 10^4 N
d. 2.7 x 10^4 N

Answers

B. The normal force that is exerted on the coaster by the track at the lowest point is 4.7 x 10⁴ N.

Normal force exerted on the coaster at the lowest point

Fₙ = mg + mv²/r

where;

m is mass of the coasterv is speed of the coasterr is radius of the path

Fₙ = (2,000 x 9.8) + (2,000 x 18²)/24

Fₙ = 46,600 N

Fₙ =  4.7 x 10⁴ N

Thus, the normal force that is exerted on the coaster by the track at the lowest point is 4.7 x 10⁴ N.

Learn more about normal force here: https://brainly.com/question/14486416

#SPJ1

A 69-kg base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.
(a) How much mechanical energy is lost due to friction acting on the runner?
J
(b) How far does he slide?
m

Answers

The mechanical energy lost is 353.28 Joules . The distance he slid off is 0.16m.

we know:-

Mass = 69 kg

Speed = 3.2 m/s

Coefficient of friction ( ratio of friction force and normal force ) = 0.70

Acceleration due to gravity, g = 9.8 m/s^2

(a) To determine the amount of mechanical energy that is lost because of friction acting on the runner, we would calculate the change in kinetic energy:

[tex]KE = \frac{1}{2} m (v-u)^{2}[/tex]

      [tex]= \frac{1}{2} 69 ( 3.2-0 )^{2}[/tex]

      [tex]= 353.28[/tex] Joules

Mechanical energy = 353.28 Joules

(b) To determine how far (distance) the runner slide:

acceleration = ug

                     [tex]= 3.2[/tex] × [tex]9.8[/tex]

                     [tex]= 31.36[/tex] [tex]m/s^{2}[/tex]

distance ,

[tex]V^{2} = U^{2} + 2aS[/tex]

[tex]( 3.2)^{2} = 0 + 2 ( 31.36) S[/tex]

[tex]10.24 = 62.72 S[/tex]

[tex]S = {\frac{10.24}{62.72} }[/tex]

Distance, S = 0.16 m  

Learn more about mechanical energy here:-  

https://brainly.com/question/8630757

#SPJ1        

A 1400-kg sports car (including the driver) crosses the rounded top of a hill (radius = 87.0 m ) at 18.0 m/s .
a) Determine the normal force exerted by the road on the car.
b)Determine the normal force exerted by the car on the 65.0- kg driver.
c)Determine the car speed at which the normal force on the driver equals zero.

Answers

(a) The normal force exerted by the road on the car is 8,506.2 N.

(b) The normal force exerted by the car on the driver is 394.9 N.

(c) The speed of the car at which the normal force on driver is zero is 29.2 m/s.

Normal force exerted by the road on the car

The normal force exerted by the road on the car is calculated as follows;

Normal force = weight of the car - centripetal force of car

Weight of the car = (1400 x 9.8) = 13,720 N

Centripetal force of the car = (1400 x 18²)/87 = 5,213.8 N

Normal force = 13,720 N -  5,213.8 N

Normal force = 8,506.2 N

Normal force exerted on the driver

Normal force = weight of driver - centripetal force of driver

Weight of driver = (65 x 9.8) = 637 N

Centripetal force of driver = (65² x 18²)/(87) = 242.07 N

Normal force =  637 N - 242.07 N = 394.9 N

Speed at which normal force on driver is zero

N = mg - mv²/r

0 = mg - mv²/r

mv²/r = mg

v²/r = g

v² = rg

v = √rg

v = √(87 x 9.8)

v = 29.2 m/s

Thus, the normal force exerted by the road on the car is 8,506.2 N.

The normal force exerted by the car on the driver is 394.9 N.

The speed of the car at which the normal force on driver is zero is 29.2 m/s.

Learn more about normal force here: https://brainly.com/question/14486416

#SPJ1

a) Calculate the magnitude of the magnetic field at point P due to the current in the semicircular section of wire shown in the figure (Figure 1). (Hint: Does the current in the long, straight section of the wire produce any field at P?)
Express your answer in terms of the variables I , R , and magnetic constant μ0 .

b) Find the direction of the magnetic field at point P.

Answers

Hello!

a)

To begin, let me first clarify that no section of the wire along the axis of the point 'P' will contribute to the magnetic field (Aka, the straight part of the wire) because the radius vector and current vectors would be parallel.


Now, let's use Biot-Savart's Law:
[tex]dB = \frac{\mu_0}{4\pi }\frac{id\vec{l}\times \hat{r}}{r^2}[/tex]

B = Magnetic field strength (? T)
μ₀ = Permeability of free space (Tm/A)

i = Current in wire ('I' A)
dl = differential length element

r = distance from wire to point P ('R' m, remains constant!)

We can rewrite Biot-Savart as:
[tex]B = \frac{\mu_0}{4\pi } \int \frac{id\vec{l}\times \hat{r}}{r^2}[/tex]

First, let's mind the cross-product.

The angle between the radius vector (Along 'R') and the current vector is ALWAYS 90° since the two vectors are perpendicular along the arc. At a certain point, think about the current as being "tangential" to the differential length and thus perpendicular to the radius.

Therefore, we can disregard the cross-product since sin(90) = 1.

Let's plug in what we already know, replacing 'dl' with 'ds' since this is an arc:

[tex]B = \frac{\mu_0}{4\pi } \int \frac{ids}{R^2}[/tex]

We have a semi-circle, so we are integrating from 0 to π radians.

[tex]B = \frac{\mu_0}{4\pi } \int\limits^{\pi}_{0} {\frac{ids}{R^2}}[/tex]

Simplifying to make the integral easier, we can take constants out of the integral.

[tex]B = \frac{\mu_0i}{4\pi R^2 } \int\limits^{\pi R}_{0} {} \, ds[/tex]

Evaluating:
[tex]B = \frac{\mu_0i}{4\pi R^2} (\pi R- 0) = \boxed{\frac{\mu_0 i}{4R}}[/tex]

b)

Using the current Right-Hand-Rule at the top of the arc, point your thumb to the right. Curl your fingers as if you are gripping the wire over the top and all the way over to the other side of the wire (Where point 'P' would be). Your fingers should point INTO THE PAGE.

A 269 kg weather balloon is designed to lift a 2910 kg package. What volume should the balloon have after being inflated with helium in order that the total load can be lifted? (Assume standard temperature and pressure, at which the density of air is ρair = 1.29 kg/m3 and the density of helium is ρHe = 0.179 kg/m3.)

Answers

The volume of the helium balloon in order to lift the weight is 17,760.

To find the answer, we need to know about the buoyant force.

What's the buoyant force?When a lighter object is kept in a higher density medium, it experiences a force along upward by that medium. This is buoyant force.Mathematically, buoyant force= density × volume of the object×g

What's the volume of helium required to lift the 269kg weather balloon and 2910kg package?To lift the weight, the buoyant force must equal to the weight.If V is the volume of helium, buoyant force= V×0.179×gSo, V×0.179×g = (269+2910)g

     => V= 3179/0.179 = 17,760m³

Thus, we can conclude that the volume of the helium balloon in order to lift the weight is 17,760m³.

Learn more about the buoyant force here:

brainly.com/question/3228409

#SPJ1

Based on the way living things are organized ehat level combines to form organ ststems

Answers

Answer:

Higher levels of organization are built from lower levels.

Molecules combine to form cells.

Cells combine to form tissues.

Tissues combine to form organs.

Organs combine to form organ systems,

and organ systems combine to form organisms.

Explanation:

Hope it helps.

If you were in a spaceship watching a ball hover at rest (inside the spaceship) in mid-air, and the spaceship suddenly began rapidly accelerating, what would you see happen to the ball? Why?

Answers

Answer:

It will still hover until the spaceship "hits" or exerts a force on it.

Explanation:

Remember, if there is no net force, there is no acceleration or movement.

In this case, our ball is hovering in the spaceship, and in space, we can assume there is no [tex]F_g[/tex], and we can assume there is no [tex]F_N[/tex], nor no forces acting against it.

So, the ball would not move.

However, once the spaceship starts accelerating, the ball would still hover until the spaceship exerts a force on it.

This is because of the same thing as explained above, no forces acting on it, therefore, no acceleration.

Think about it this way.

Imagine you jumped up, then someone threw a ball at you. Now let's imagine you can't move until you hit the floor, meaning that in an ideal situation only  [tex]F_g[/tex] is acting on you. Now again, let's imagine time slows really down for you, but not the ball. Before the ball comes and hits you, you are "hovering" like a ball. But after the ball hits you, you move a little because the ball exerted a force on you.

If you did not understand what I meant above, just forget about it, and think about the fact that if there is a Net force (all the force values added up), then there is acceleration and movement.

A plank of length L=2.200 m and mass M=4.00 kg is suspended horizontally by a thin cable at one end and to a pivot on a wall at the other end as shown. The cable is attached at a height H=1.70 m above the pivot and the plank's CM is located a distance d=0.700 m from the pivot.
Calculate the tension in the cable.

Answers

Hello!

Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.

[tex]\Sigma \tau = 0[/tex]

We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)

- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)

Both of these act in opposite directions. Let's use the equation for torque:
[tex]\tau = r \times F[/tex]

Doing the summation using their respective lever arms:

[tex]0 = L Tsin\theta - dF_g[/tex]

[tex]dF_g = LTsin\theta[/tex]

Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:

[tex]tan\theta = \frac{H}{L}\\\\tan^{-1}(\frac{H}{L}) = \theta\\\\tan^{-1}(\frac{1.70}{2.200}) = 37.69^o[/tex]

Now, let's solve for 'T'.

[tex]T = \frac{dMg}{Lsin\theta}[/tex]

Plugging in the values:
[tex]T = \frac{(0.700)(4.00)(9.8)}{(2.200)sin(37.69)} = \boxed{20.399 N}[/tex]

Two planets X and Y travel counterclockwise in circular orbits about a star, as seen in the figure.
The radii of their orbits are in the ratio 4:3. At some time, they are aligned, as seen in (a), making a straight line with the star. Five years later, planet X has rotated through 88.0°, as seen in (b). By what angle has planet Y rotated through during this time?

Answers

Answer:  Two planets X and Y travel counterclockwise in circular orbits about a star, as seen in the figure. The radii of their orbits are in the ratio 4:3. At some time, they are aligned, as seen in (a), making a straight line with the star. Five years later, planet X has rotated through 88.0°, as seen in (b). Then, at an angle 135.48°, the planet Y rotated through during this time.

Explanation: To find the answer, we need to know about the Kepler's third law of planetary motion.

What is Kepler's third law of planetary motion?Kepler's third law of planetary motion states that, the square of the period of revolution is proportional to the cube of the orbital radius of the elliptical path.It can be expressed as,

                                      T² ∝ r³

How to solve the problem?We have given with the ratio of the radii of their orbits as,4:3.planet X rotated through an angle of 88°.thus,

                 [tex]\frac{r_1}{r_2}=\frac{4}{5} \\\frac{T_1}{T_2} =(\frac{r_1}{r_2})^{3/2}\\[/tex]

As we know that,

                  [tex]T=\frac{2\pi }{w}[/tex] where, w is the angular velocity.

Angular displacement is the angle swept by the position vector of a particle in a given interval of time.

                           [tex]\alpha[/tex] =wt.

We can rewrite our equation as,

                   [tex]\frac{T_x}{T_y}=\frac{w_y}{w_x}\\thus,\\\frac{w_y}{w_x}=(\frac{r_1}{r_2})^{3/2}[/tex]

We have to find the angle rotated by planet Y during 5 yrs. So, we can rewrite the above equation in terms of angular displacement.

                     [tex]\frac{\alpha _y}{\alpha _x} = (\frac{r_1}{r_2})^{3/2}\\where,\\\alpha _x=\frac{88^0}{5 yrs} because,\\here, angle \beta_x =88^0.\\[/tex]

Thus, the angle rotated by planet Y during 5 yrs will be  [tex]\beta _y[/tex] =

                     [tex]\alpha _y=\frac{88}{5yrs} *(\frac{4}{3} )^{3/2}=\frac{135.48^0}{5yrs} .\\thus,\\\beta _y=135.48^0.[/tex]

Thus, we can conclude that the angle rotated by planet Y during 5 yrs will be 135.48 degrees.

Learn more about the Kepler's third law of planetary motion here:

https://brainly.com/question/28105769

#SPJ4

The planet Y then rotated through at this time at an angle of 135.48°.

In order to understand the solution, we must be familiar with Kepler's third law of planetary motion.

What does the third law of planetary motion by Kepler say?According to Kepler's third law of planetary motion, the elliptical path's orbital radius is proportional to the cube of the square of the revolution's period.It can be stated as follows:

                              T² ∝ r³

How can the issue be resolved?The ratio of their orbital radii that we have provided is 4:3.Planet X rotated at an 88° angle. thus,

                                  [tex]\frac{R_1}{R_2}=\frac{4}{5} \\\frac{T_1}{T_2}=(\frac{4}{5} ) ^{\frac{3}{2} }[/tex]

As we are aware,

                                [tex]T=\frac{2\pi }{w}[/tex]

where w is the angle of rotation per time.

The angle that a particle's position vector sweeps over in a specific amount of time is known as the angular displacement.

                                     [tex]\alpha[/tex]=wt.

Our equation can be rewritten as,

                                   [tex]\frac{w_y}{w_x} =(\frac{4}{5} ) ^{\frac{3}{2} }[/tex]

We have to find the angle that planet Y rotated at over the course of five years. Consequently, we can express the equation above in terms of angular displacement.

                                   [tex]\frac{\alpha _y}{\alpha _x}=(\frac{4}{3} ) ^{\frac{3}{2} } , where\\\alpha _x=\frac{88}{5yrs} \\[/tex]

So, during a period of five years, planet Y will rotate at an angle,

                           [tex]\alpha _y=\frac{88}{5yrs} *(\frac{4}{3} ) ^{\frac{3}{2} }=\frac{135.48}{5yrs}[/tex]

Thus, we may infer that planet Y will revolve at an angle of 135.48 degrees during the course of five years.

Learn more about the Kepler's law of planetary motion here:

https://brainly.com/question/28105769

#SPJ1

Three parallel wires each carry current I in the directions shown in (Figure 1). The separation between adjacent wires is d.
a) Calculate the magnitude of the net magnetic force per unit length on the top wire.
b) Calculate the magnitude of the net magnetic force per unit length on the middle wire.
c) Calculate the magnitude of the net magnetic force per unit length on the bottom wire.

Answers

(a) The magnitude of the net magnetic force per unit length on the top wire is μI²/πd.

(b) The magnitude of the net magnetic force per unit length on the middle wire is zero.

(c) The magnitude of the net magnetic force per unit length on the bottom wire is 3μI²/4πd.

Force per unit length

The magnitude of the net magnetic force per unit length on the top wire is calculated as follows;

F₁/L = (μI₁/2π) x (I₂/d + I₃/d)

F₁/L = (μI/2π) x (I/d + I/d)

F₁/L = (μI/2π) x (2I/d)

F₁/L = μI²/πd

The magnitude of the net magnetic force per unit length on the middle wire is calculated as follows;

F₂/L = (μI₂/2π) x (I₃/d - I₁/d)

F₂/L = (μI/2π) x (I/d -  I/d) = 0

The magnitude of the net magnetic force per unit length on the middle bottom is calculated as follows;

F₃/L = (μI₂/2π) x (I₁/d + I₂/d)

F₃/L =  (μI/2π) x (I/2d + I/d)

F₃/L =  (μI/2π) x (3I/2d)

F₃/L =  3μI²/4πd

Thus, the magnitude of the net magnetic force per unit length on the top wire is μI²/πd.

The magnitude of the net magnetic force per unit length on the middle wire is zero.

The magnitude of the net magnetic force per unit length on the bottom wire is 3μI²/4πd.

Learn more about magnetic force here: https://brainly.com/question/13277365

#SPJ1

A lead weight falls from a height of 6 m onto a muddy surface. It comes to rest after penetrating 0.4 cm into the surface. What was the magnitude of the average acceleration during the impact? How long did it take to stop?

(Also can I have like a little explanation :))

Answers

The the magnitude of the average acceleration during the impact is 9.8 m/s² and the time of motion is 1.11 s.

Average acceleration of the lead weight during the impact

The lead weight will fall under the influence of gravity with magnitude of 9.8 m/s².

Time of motion of the lead weight

t = √2h/g

where;

h is the total height of fall, h = 6 m + 0.4 cm = 6.004 mg is acceleration due to gravity

t = √((2 x 6.004)/9.8)

t = 1.11 s

Thus, the the magnitude of the average acceleration during the impact is 9.8 m/s² and the time of motion is 1.11 s.

Learn more about time of motion here: https://brainly.com/question/2364404

#SPJ1

Three equal positive charges 'q' are at the corners of an equilateral triangle of side 'a'.
a. Assuming that the three charges together create an electric field, find the location of a point other than the obvious one where the electric field is zero.
b. What is the magnitude and direction of the electric field at the top corner due to the two charges at the base?

Answers

(a) The location of a point where the electric field is zero is at the center of the triangle which is equal to ¹/₆√3a.

(b) The magnitude and direction of the electric field at the top corner due to the two charges at the base is  1.732 kq/a².

Position where the electric field is zero

The electric field is zero at the center of the equilateral triangle whose magnitude is equal to √3a/6.

Electric field at top corner due to two charges at the base

E = E₁ + E₂

where;

E₁ is electric field at the left base cornerE₂ is electric field at the right base corner

E = kq/a²[(cos 60i + sin 60j) + (-cos 60i + sin 60j)]

E = kq/a²[2(sin 60j)] = 1.732 kq/a²

Thus, the location of a point where the electric field is zero is at the center of the triangle which is equal to ¹/₆√3a.

The magnitude and direction of the electric field at the top corner due to the two charges at the base is  1.732 kq/a².

Learn more about electric field here: https://brainly.com/question/14372859

#SPJ1

A rocket takes off from Earth's surface, accelerating straight up at 63.2 m/s2. Calculate the normal force (in N) acting on an astronaut of mass 84.4 kg, including her space suit. (Assume the rocket's initial motion parallel to the +y-direction. Indicate the direction with the sign of your answer.)


______N

Answers

From the calculation, the normal force is 6161.2 N.

What is the normal force?

The normal force is given by the expression;

N - mg = ma

Then;

N = mg + ma

m = 84.4 kg

g = 9.8 m/s^2

a = 63.2 m/s2

Now we have;

N = m(g + a)

N = 84.4 (9.8 + 63.2)

N = 6161.2 N

Learn more about normal force:https://brainly.com/question/15520313

#SPJ1

Can momentum be negative?
A. No.
B. Yes, if it has a very small mass.
C. Yes, if it is moving very slow.
D. Yes, if it is moving backward.

Answers

Answer:

D

Explanation:

momentum can be negative as it's a vector quantity. positive momentum indicates that the object is traveling in the positive direction as defined by the coordinate system. negative momentum indicates that the object is moving in the opposite direction (backwards). the momentum equation itself is p = mass x velocity.

and only if you consider velocity a a directed vector, can you have a negative momentum. this equation shows that the momentum is in the same direction as velocity.

so, the sign is only for the direction.

the force is the same (going with the absolute value). a negative momentum is not smaller than a positive momentum.

It is possible that momentum can be negative if an object is moving backward. The correct option is D.

A vector quantity called momentum depends on an object's mass and velocity. It is described as the result of the mass and the velocity of an object.

When an item is moving against a selected positive direction, its velocity will be negative since velocity is a vector variable that comprises both magnitude and direction. As a result, the negative velocity will yield a negative value for momentum when it is calculated.

Thus the correct option is D.

For more details regarding momentum, visit:

https://brainly.com/question/30677308

#SPJ6

If the voltage between 2 plates is 30 V and the electric field strength is 10 V/m, what is the separation distance between the plates?
A. 10 m
B. 2 m
C. 3 m
D. 30 m

Answers

The answer is A because 2 plates is 30v
Other Questions
When accounting for defined benefit pensions, the net pension liability for employees of governmental activities is: Help all of these are confusing me kenji and mary are members of a school committee A common type of oral smokeless tobacco in the united states is ________, and a small pinch is dipped out of the can and placed beside the gum, often behind the lower lip. What is the sum of the terms of the series 1+3+5+...+15 Which quadratic function is in standardform? What numbers are the arrows pointing to?a)b)c)602.5703.5 A conflict between two or more similar characters is one example of a _____plot You can practice converting between the mass of a solution and mass of solute when the mass percent concentration of a solution is known. The concentration of the KCN solution given in Part A corresponds to a mass percent of 0.208 % . What mass of a 0.208 % KCN solution contains 914 mg of KCN ? Express the mass to three significant figures and include the appropriate units. a client with midsternal pain presents to the emergency department. vital signs are stable. which form of nitroglycerin The infectious cycles of enveloped animal viruses and temperate bacteriophages are most similar because:_______ Which statement is an example of a fact?O A. The Mexican-American War should be considered one of thegreatest victories of the United States.B. Mexico's economic problems stem from its losses during theMexican-American War.C. The United States gained large amounts of land because of theMexican-American War.D. The United States was wrong to start the Mexican-American Warto achieve Manifest Destiny. Two friends, Jamie and Devin, are working together at the Sparrowtown Cafe today. Jamie works every 2 days, and Devin works every 7 days. How many days do they have to wait until they next get to work together? A company is currently paying its employees $0.38 per mile to drive their own cars on company business. The company is considering supplying employees with cars, which would involve purchasing at $25,000 with an estimated three-year life, a net salvage value of $8,000, taxes and insurance at a cost of $900 per year, and operating and maintenance expenses of $0.22 per mile. If the interest rate is 10% and the company anticipates an employees annual travel to be 22,000 miles, what is the equivalent cost per mile (neglecting income taxes)? Which of the following were part of the Wall Street Reform and Consumer Protection Act that was passed by Congress in 2010 fter a below-the-knee amputation, a client is refusing to eat, talk, or perform any rehabilitative activities. Which approach would the nurse take when interacting with this client Find the value of x.helllppp tysm On a piece of graph paper, plot the following points: A (0, 0), B (5, 0), and C (2, 4). These coordinates will be the vertices of a triangle. How would you use the distance formula to determine what kind of triangle this is? Is the triangle equilateral, right, or scalene? Now use the midpoint formula to determine the midpoints of the triangle's sides: segments AB, BC, and CA. Connect the midpoints to make four triangles within the first triangle. Are these four triangles similar? Highlight each sentence and match them to the correct answer.Will you write me a letter?Can I come over to your house?Why is this here?3 optionsA - This is a question. It is trying to find something out, and it ends with a question mark. It starts with the question word will.B - This is a question. It uses the question word why. It is asking for an answer, and ends with a question mark.C - Even though it doesn't start with a question word, this is a question. It is asking for information, and ends in a question mark. Q.3 - The table and the graph each show a different relationship between the same two variables, x and y:How much more would the value of y be in the table than its value on the graph when x = 11?