Water has a specific heat capacity of 1.00 cal/g °C, and copper has a specific heat capacity of 0.092 cal/g °C. If both are heated to 100 °C, which takes longer to cool?

Answers

Answer 1

Answer:

The water takes longer, because it is the better insulator here.

Explanation:

Conductors and insulators work similarly in "reverse".

If something is a good heat conductor, then it's good at both absorbing heat energy and giving it away. Insulators are good at resisting temperature changes, but also take longer to cool down once they are heated up.

So because copper is the better conductor here, it will cool faster than the water at the same temperature.


Related Questions

which objects would have a greater gravitational force between them, Objects A and B, or Objects B and C

Answers

Answer:

Objects that are closer together have a stronger force of gravity between them.

Explanation:

For example, the moon is closer to Earth than it is to the more massive sun, so the force of gravity is greater between the moon and Earth than between the moon and the sun.

A neutron star has a mass of between 1.4-2.8 solar masses compressed to the size of:
A. Earth
B. The state of Oregon
C. North America
D. An average city

Answers

The correct answer is D. An average city

Explanation:

A neutron star differs from others due to its massive density, this means a lot of matter is compressed in a small area. Indeed, neutron stars have a mass of around 1.4 to 2.8 times the mass of the sun. But these are considerably small as they only measure around 20 kilometers, which is the size of an average city. Additionally, neutron stars are this dense because they are the result of a regular star exploding, which leads to a super-dense core, or neutron star. In this context, the mass of a neutron star is compressed to the size of an average city.

A train is approaching you at very high speed as you stand next to the tracks. Just as an observer on the train passes you, you both begin to play the same recorded version of a Beethoven symphony on identical MP3 players. (a) According to you, whose MP3 player finishes the symphony first?
A. your player,
B. the observer's player,
C. both finish at the same time. (b) According to the observer on the train, whose MP3 player finishes the symphony first?
A. your player,
B. the observer's player,
C. both finish at the same time. (c) Whose MP3 player actually finishes the symphony first?
A. your player,
B. the observer's player,
C. each observer measures his symphony as finishing first,
D. each observer measures the other's symphony as finishing first.

Answers

Answer:

a) Your player

b) Observer's player

c) Each measures their own first

Explanation:

Because given problem is having relative velocity to each other. The person sitting on the train is moving with a very high speed relative to the person standing next to the track.

In this case, the clock situated in the train will be running slow with respect to the stationary frame of reference

A student holds a bike wheel and starts it spinning with an initial angular speed of 7.0 rotations per second. The wheel is subject to some friction, so it gradually slows down.

In the 10.0 s period following the inital spin, the bike wheel undergoes 60.0 complete rotations. Assuming the frictional torque remains constant, how much more time Δ????s will it take the bike wheel to come to a complete stop?

The bike wheel has a mass of 0.625 kg0.625 kg and a radius of 0.315 m0.315 m. If all the mass of the wheel is assumed to be located on the rim, find the magnitude of the frictional torque ????fτf that was acting on the spinning wheel.

Answers

Answer:

a)   Δt = 24.96 s , b)  τ = 0.078 N m

Explanation:

This is a rotational kinematics exercise

        θ = w₀ t - ½ α t²

Let's reduce the magnitudes the SI system

       θ = 60 rev (2π rad / 1 rev) = 376.99 rad

       w₀ = 7.0 rot / s (2π rad / 1 rpt) = 43.98 rad / s

       

      α = (w₀ t - θ) 2 / t²

let's calculate the annular acceleration

      α = (43.98 10 - 376.99) 2/10²

      α = 1,258 rad / s²

Let's find the time it takes to reach zero angular velocity (w = 0)

        w = w₀ - alf t

         t = (w₀ - 0) / α

         t = 43.98 / 1.258

         t = 34.96 s

this is the total time, the time remaining is

         Δt = t-10

         Δt = 24.96 s

To find the braking torque, we use Newton's law for angular motion

        τ = I α

the moment of inertia of a circular ring is

       I = M r²

we substitute

         τ = M r² α

we calculate

        τ = 0.625  0.315²  1.258

        τ = 0.078 N m

The total time taken by the wheel to come to rest is 25.18 s and the magnitude of the frictional torque is 25.18 N-m.

Given data:

The initial angular speed of wheel is, [tex]\omega = 7.0 \;\rm rps[/tex]   (rps means rotation per second).

The time interval is, t' = 10.0 s.

The number of rotations made by wheel is, n = 60.0.

The mass of bike wheel is, m = 0.625 kg.

The radius of wheel is, r = 0.315 m.

The problem is based on rotational kinematics. So, apply the second rotational equation of motion as,

[tex]\theta = \omega t-\dfrac{1}{2} \alpha t'^{2}[/tex]

Here, [tex]\theta[/tex] is the angular displacement, and its value is,

[tex]\theta =2\pi \times 60\\\\\theta = 376.99 \;\rm rad[/tex]

And, angular speed is,

[tex]\omega = 2\pi n\\\omega = 2\pi \times 7\\\omega = 43.98 \;\rm rad/s[/tex]

Solving as,

[tex]376.99 = 43.98 \times 10-\dfrac{1}{2} \alpha \times 10^{2}\\\\\alpha = 1.25 \;\rm rad/s^{2}[/tex]

Apply the first rotational equation of motion to obtain the value of time to reach zero final velocity.

[tex]\omega' = \omega - \alpha t\\\\0 = 43.98 - 1.25 \times t\\\\t = 35.18 \;\rm s[/tex]

Then total time is,

T = t - t'

T = 35.18 - 10

T = 25.18 s

Now, use the standard formula to obtain the value of braking torque as,

[tex]T = m r^{2} \alpha\\\\T = 0.625 \times (0.315)^{2} \times 1.25\\\\T = 0.0775 \;\rm Nm[/tex]

Thus, we can conclude that the total time taken by the wheel to come to rest is 25.18 s and the magnitude of the frictional torque is 25.18 N-m.

Learn more about the rotational motion here:

https://brainly.com/question/1388042

beam of white light goes from air into water at an incident angle of 58.0°. At what angles are the red (660 nm) and blue (470 nm) parts of the light refracted? (Enter your answer to at least one decimal place.) red ° blue °

Answers

Answer:

For red light= 39.7°

Blue light 39.2°

Explanation:

Given that refractive index for red light is 1.33 and that of blue light is 1.342

So angle of refraction for red light will be

Sinစi/ (sinစ2) =( nw)r/ ni

Sin 58° x 1.000293/1.33. =( sinစ2)r

0.64= sinစ2r

Theta2r = 39.7°

For blue light

Sinစi/ (sinစ2) =( nw)b/ ni

Sin 58° x 1.000293/1.342 =( sinစ2)b

0.632= sinစ2r

Theta2b= 39.19°


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

In state-of-the-art vacuum systems, pressures as low as 1.00 10-9 Pa are being attained. Calculate the number of molecules in a 1.90-m3 vessel at this pressure and a temperature of 28.0°C. molecules

Answers

Answer:

The number of molecules is 4.574 x 10¹¹ Molecules

Explanation:

Given;

pressure in the vacuum system, P = 1 x 10⁻⁹ Pa

volume of the vessel, V = 1.9 m³

temperature of the system, T = 28°C = 301 K

Apply ideal gas law;

[tex]PV= nRT = NK_BT[/tex]

Where;

n is the number of gas moles

R is ideal gas constant = 8.314 J / mol.K

[tex]K_B[/tex] is Boltzmann's constant, = 1.38 x 10⁻²³ J/K

N is number of gas molecules

N = (PV) / ([tex]K_B[/tex]T)

N = (1 x 10⁻⁹ X 1.9) / ( 1.38 x 10⁻²³  X 301)

N = 4.574 x 10¹¹ Molecules

Therefore, the number of molecules is 4.574 x 10¹¹ Molecules

Warm blooded animals are homeothermic; that is, they maintain an approximately constant body temperature. (Forhumans it's about 37 oC.) When they are in an environment that is below their optimum temperature, they use energy derived from chemical reactions within their bodies to warm them up. One of the ways that animals lose energy to their environment is through radiation. Every object emits electromagnetic radiation that depends on its temperature. For very hot objects like the sun, that radiation is visible light. For cooler objects, like a house or a person, that radiation is in the infrared and is invisible. Nonetheless, it still carries energy. Other ways that energy is lost by a warm animal to a cool environment includes conduction (direct touching of a cooler object) and convection (cooler air moving and carrying thermal energy away). See Heat Transfer for a discussion of all three.

For this problem, we'll just consider how much energy an animal needs to burn (obtain from internal chemical reactions) in order to stay warm just from radiation losses. The rate at which an object loses energy through radiation is given by the Stefan-Boltzmann equation:

Rate of energy loss = AεσT4



where T is the absolute (Kelvin) temperature, A is the area of the object, ε is the emissivity (unitless and =1 for a perfect emitter, less for anything else), and σ is the Stefan-Boltzmann constant:

σ = 5.67 x 10-8 J/(s m2 K4)



Consider a patient trying to sleep naked in a cool room (55 oF = 13 oC). Assume that the person being considered is a perfect emitter and absorber of radiation (ε = 1), has a surface area of about 2.5 m2, and a mass of 80 kg.

a. A person emits thermal radiation at a rate corresponding to a temperature of 37 oC and absorbs radiation at a rate (from the air and walls) corresponding to a temperature of 13 oC. Calculate the individual's net rate of energy loss due to radiation (in Watts = Joules/second).
net rate of energy loss = Watts

b. Assume the patient produces no energy to keep warm. If they have a specific heat about equal to that of water (1 Cal/kg-oC) how much would their temperature fall in one hour? (1 Cal = 1kcal = 103 cal)
ΔT = oC

c. Given that the energy density of fat is about 9 Cal/g, how many grams of fat would the person have to utilize to maintain their body temperature in that environment for one hour?
amount of fat needed = g

Answers

Answer:

a) 360.7 J/s

b) 16.23 °C

c) 34.48 g

Explanation:

The mass of the person = 80 kg

The person is a perfect emitter, ε = 1

surface area of the person = 2.5 m^2

a) If he emits radiation at 37 °C, [tex]T_{out}[/tex] = 37 + 273 = 310 K

and receives radiation at 13 °C, [tex]T_{in}[/tex] = 13 + 273 = 286 K

Rate of energy loss E = Aεσ([tex]T^{4} _{out}[/tex] - [tex]T^{4} _{in}[/tex] )

where σ = 5.67 x 10^-8 J/(s m^2 K^4)

substituting values, we have

E = 2.5 x 1 x 5.67 x 10^-8 x ([tex]310^{4}[/tex] - [tex]286^{4}[/tex]) = 360.7 J/s

b) If they have specific heat about equal to that of water = 1 Cal/kg-°C

but 1 Cal = 1 kcal = 10^3 cal

specific heat of person is therefore = 10^3 cal/kg-°C

heat loss = 360.7 J/s = 360.7 x 3600 = 1298520 J/hr

heat lost in 1 hour = 1 x 1298520 = 1298520 J

This heat lost = mcΔT

where ΔT is the temperature fall

m is the mass

c is the specific heat equivalent to that of water

the specific heat is then = 10^3 cal/kg-°C

equating, we have

1298520 = 80 x 10^3 x ΔT

1298520 = 80000ΔT

ΔT = 1298520/80000 = 16.23 °C

c) 1298520 J = 1298520/4184 = 310.35 Cal

density of fat = 9 Cal/g

gram of fat = 310.35/9 = 34.48 g

What happens when a ray of light enters a glass slab ?​

Answers

Explanation:

then the

speed decreases

Answer:

It gets refracted,

Explanation:

Because i did a couple different searches.

A woman was told in 2020 that she had exactly 15 years to live. If she travels away from the Earth at 0.8 c and then returns at the same speed, the last New Year's Day the doctors expect her to celebrate is:

Answers

Answer:

2035

Explanation:

The doctor does not travel with the woman, and therefore, he won't experience any relativistic effect on his time. The doctor will judge time by the time here on earth. Technically, the last new year's day the doctor, who is here on earth, would expect the woman to celebrate will be in 2020 + 15 years = 2035

Sammy is 5 feet and 5.3 inches tall.tall.what is sammy's height in metres?

Answers

Answer:

65.3

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

Answer:

It will be 》》》》1.664716m

Select from the following for the next two questions:
A virtual, inverted and smaller than the object
B real, inverted and smaller than the object
C virtual, upright and smaller than the object
D real, upright and larger than the object
E virtual, upright and larger than the object
F real, inverted and larger than the object
G virtual, inverted and larger than the object
H real, upright and smaller than the object
An object is placed 46.9 cm away from a converging lens. The lens has a focal length of 10.0 cm. Select the statement from the list above which best describes the image an objesthse place 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm. Select the statement from the An object is placed 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm. Select the statement from the list above which best describes the image.

Answers

Answer:

Explanation:

1 )

An object is placed 46.9 cm away from a converging lens. The lens has a focal length of 10.0 cm.

Since the object is placed at a distance more than twice the focal length , its image will be inverted , real  and will be of the size less than the size of object . So option B is applied .

B)  real, inverted and smaller than the object.

2 )

An object is placed 46.9 cm away from a spherical convex mirror. The radius of curvature of the mirror is 20.0 cm.

The object is placed at a point beyond its radius of curvature, its image will be formed at a point between f and C   or between focal point and centre of curvature . Its size will be smaller than size of object and it will be real and inverted .

B)  real, inverted and smaller than the object.

Two parallel slits are illuminated with monochromatic light of wavelength 567 nm. An interference pattern is formed on a screen some distance from the slits, and the fourth dark band is located 1.83 cm from the central bright band on the screen. (a) What is the path length difference corresponding to the fourth dark band? (b) What is the distance on the screen between the central bright band and the first bright band on either side of the central band? (Hint: The angle to the fourth dark band and the angle to the first bright band are small enough that tan θ ≈ sin θ.)

Answers

Answer:

a)1984.5nm

b)523mm

Explanation:

A)A destructive interference can be explained as when the phase shifting between the waves is analysed by the path lenght difference

θ=(m+0.5)λ where m= 1,2.3....

Where given from the question the 4th dark Fringe which will take place at m= 3

θ=7/2y

Where y= 567nm

= 7/2(567)=1984.5nm

But

B)tan θ ≈ y/d

And sinθ = mλ/d

y=mλd when m= 1 which is the first bright we have

Then y=(1× 567.D)/d

But the distance from Central to the 4th dark Fringe is 1.83cm then

y= 7λD/2d= 1.83cm

D/d=(2)×(1.83×10^-2)/(7×567×10^-9)

=92221.5

y= (567×10^-9)× (92221.5)

=0.00523m

Therefore, the distance between the first and center is y1-y0= 523mm

Water flows at 0.00027 m3/s through a 10-m long garden hose lying on the ground, with a radius of 0.01 m. Water has a viscosity of 1 mPa.s What is the magnitude of gauge pressure in Pa of the water entering the hose

Answers

Answer:

The gauge pressure is  [tex]P = 687.4 \ Pa[/tex]

Explanation:

From the question we are told that

    The rate of flow is  [tex]Q = 0.00027 m^3 /s[/tex]

      The height is h  =  10 m

      The radius is  r =  0.01 m

     The  viscosity is  [tex]\eta = 1mPa \cdot s = 1 *10^{-3} \ Pa\cdot s[/tex]

       

Generally the gauge pressure according to Poiseuille's equation  is mathematically represented as  

               [tex]P = 8 \pi \eta * \frac{L * v }{ A}[/tex]

Here v is the velocity of the water which is mathematically represented according to continuity equation as

             [tex]v = \frac{Q}{A }[/tex]

Where A is the cross-sectional area which is mathematically represented as

            [tex]A = \pi r^2[/tex]

substituting values

          [tex]A = 3.142 *(0.01)^2[/tex]

           [tex]A = 3.142 *10^{-4} \ m^2[/tex]

So

      [tex]v = \frac{ 0.00027}{3.142*10^{-4}}[/tex]

       [tex]v = 0.8593 \ m/s[/tex]

So

       [tex]P = 8 * 3.142 * 1.0*10^{-3}* \frac{10 * 0.8593 }{ 3.142*10^{-4}}[/tex]

       [tex]P = 687.4 \ Pa[/tex]

A 0.500 H inductor is connected in series with a 93 Ω resistor and an ac source. The voltage across the inductor is V = −(11.0V)sin[(500rad/s)t]. What is the voltage across the resistor at 2.09 x 10-3 s? Group of answer choices 205 V 515 V 636 V 542 V

Answers

Answer:

205 V

V[tex]_{R}[/tex] = 2.05 V

Explanation:

L = Inductance in Henries, (H)  = 0.500 H

resistor is of 93 Ω so R = 93 Ω

The voltage across the inductor is

[tex]V_{L} = - IwLsin(wt)[/tex]

w = 500 rad/s

IwL = 11.0 V

Current:

I = 11.0 V / wL

 = 11.0 V / 500 rad/s (0.500 H)

 = 11.0 / 250

I = 0.044 A

Now

V[tex]_{R}[/tex] = IR

    = (0.044 A) (93 Ω)

V[tex]_{R}[/tex] = 4.092 V

Deriving formula for voltage across the resistor

The derivative of sin is cos

V[tex]_{R}[/tex] = V[tex]_{R}[/tex] cos (wt)

Putting V[tex]_{R}[/tex] = 4.092 V and w = 500 rad/s

V[tex]_{R}[/tex] = V[tex]_{R}[/tex] cos (wt)

    = (4.092 V) (cos(500 rad/s )t)

So the voltage across the resistor at 2.09 x 10-3 s is which means

t = 2.09 x 10⁻³

V[tex]_{R}[/tex] = (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))

    =  (4.092 V) (cos (500 rads/s)(0.00209))

    = (4.092 V) (cos(1.045))

    = (4.092 V)(0.501902)

    = 2.053783

V[tex]_{R}[/tex] = 2.05 V

The velocity function (in meters per second) is given for a particle moving along a line. Find the total distance traveled by the particle during the given interval

Answers

Answer:

s=((vf+vi)/2)t vf is final velocity and vi is initial velocity

Two instruments produce a beat frequency of 5 Hz. If one has a frequency of 264 Hz, what could be the frequency of the other instrument

Answers

Answer:

259 Hz or 269 Hz

Explanation:

Beat: This is the phenomenon obtained when two notes of nearly equal frequency are sounded together. The S.I unit of beat is Hertz (Hz).

From the question,

Beat = f₂-f₁................ Equation 1

Note: The frequency of the other instrument is either f₁ or f₂.

If the unknown instrument's frequency is f₁,

Then,

f₁ = f₂-beat............ equation 2

Given: f₂ = 264 Hz, Beat = 5 Hz

Substitute into equation 2

f₁ = 264-5

f₁ = 259 Hz.

But if the unknown frequency is f₂,

Then,

f₂ = f₁+Beat................. Equation 3

f₂ = 264+5

f₂ = 269 Hz.

Hence the beat could be 259 Hz or 269 Hz

A mechanic wants to unscrew some bolts. She has two wrenches available: one is 35 cm long, and one is 50 cm long. Which wrench makes her job easier and why?

Answers

Answer:

50 cm long

When 35cm long wrench is compared to 50cm long wrench, we find that the 50cm long wrench produces more turning effect of force because it has longer distance between fulcrum and line of action of force. At conclusion, the more the turning effect of force the more it is easy to unscrew bolts.

A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x axis at 37 m/s in the positive direction. The second, with mass 22 g , moves along the y axis at 34 m/s in the positive direction. Find the velocity of third piece.

Answers

Answer:

Explanation:

We shall apply conservation of momentum law in vector form to solve the problem .

Initial momentum = 0

momentum of 12 g piece

= .012 x 37 i since it moves along x axis .

= .444 i

momentum of 22 g

= .022 x 34 j

= .748 j

Let momentum of third piece = p

total momentum

= p + .444 i + .748 j

so

applying conservation law of momentum

p + .444 i + .748 j  = 0

p = - .444 i -  .748 j  

magnitude of p

= √ ( .444² + .748² )

= .87 kg m /s

mass of third piece = 58 - ( 12 + 22 )

= 24 g = .024 kg

if v be its velocity

.024 v = .87

v = 36.25 m / s .

1) Un objeto realiza un movimiento circular uniforme en una circunferencia de 10 metros de diámetro y efectúa 20 vueltas por minuto. Se pide hallar:
a) El periodo.
b) La frecuencia en Hertz.
c) La velocidad tangencial. d) La velocidad angular.
e) La aceleración centrípeta.

Answers

Answer:

A RECIPE NEEDS A COMBINED WEIGHT OF 720G OF FLOUR AND SUGAR. IF THE RECIPE NEEDS 5TIME FLOUR THAN SUGAR,HOW MUCH OF EACH IS NEEDED

Two identical trucks have mass 5500 kg when empty, and the maximum permissible load for each is 8000 kg. The first truck, carrying a 3900 kg, is at rest. The second truck plows into it at 64 km/h, and the pair moves away at 44 km/h. As an expert witnes, you're asked to determine whether the second truck was overloaded. What do you report? Yes the truck is overloaded, or no, the truck is not overloaded?

Answers

Answer:

no, the truck is not overloaded

Explanation:

The computation is shown below;

Let us assume the mass of the loan in the second truck be M

So, the equation is as follows

{(Mass + M) × second truck × 1000 ÷ 3,600} = {(Mass + M + mass + first truck) × Pair moves away  × 1,000 ÷ 3,600}

{(5500 + M) × 64 × 1,000 ÷ 3,600 = {(5,500 + M + 5,500 + 3,900) × 44 × 1,000 ÷ 3,600}

(5500 + M) × 64 = (14,900 + M) × 44

352,000 + 64 M = 655,600 + 44 M

After solving this

M = 15,180 kg

Therefore the second truck is not overloaded

g Calculate the maximum wavelength of light that will cause the photoelectric effect for potassium. Potassium has work function 2.29 eV = 3.67 x 10–19 J.

Answers

Answer:

λ = 5.4196 10⁻⁷m,  λ = 541.96 nm    this is green ligh

Explanation:

The photoelectric effect was explained by Eintein assuming that the light was made up of particles called photons and these collided with the electrons taking them out of the material.

 

                     K = h f -Ф

where K is the kinetic energy of the ejected electrons, hf is the energy of the light quanta and fi is the work function of the material.

The speed of light is related to wavelength and frequency

                   c = λ / f

                  f = c /λ

we substitute

                K = h c / λ - Φ

for the case that they ask us the kinetic energy of the electons is zero (K = 0)

                 h c / λ = Ф

                λ = h c / Ф

we calculate

                 λ = 6.63 10⁻³⁴  3 10⁸ / 3.67 10⁻¹⁸

                 λ = 5.4196 10⁻⁷m

let's take nm

                lam = 541.96 nm

this is green light

Terms to describe the opposition by a material.to being magnetised is

Answers

Answer:

Repulsion

Explanation:

An object is placed in a room where the temperature is 20 degrees C. The temperature of the object drops by 5 degrees C in 4 minutes and by 7 degrees C in 8 minutes. What was the temperature of the object when it was initially placed in the room

Answers

Answer:

28.3°C

Explanation:

Using

T(t) = (T(0) - 20)*(e^(-k*t)) + 20

for some positive number k, and some initial temperature T(0).

Boundary conditions:

T(4) = T(0) - 5 _______ (i)

T(8) = T(0) - 7 _______ (ii)

==> solving for T(0) and k :

(i):

(T(0) - 20)*(e^(-k*4)) + 20 = T(0) - 5 ==>

(T(0) - 20)*(e^(-k*4)) = T(0) - 20 - 5

(T(0) - 20)*(e^(-k*4)) = (T(0) - 20) - 5

5 = (T(0) - 20) - (T(0) - 20)*(e^(-k*4))

5 = (T(0) - 20) * ( 1 - e^(-k*4) )

(ii):

(T(0) - 20)*(e^(-k*8)) + 20 = T(0) - 7

(T(0) - 20)*(e^(-k*8)) = (T(0) - 20) - 7

7 = (T(0) - 20) - (T(0) - 20)*(e^(-k*8))

7 = (T(0) - 20) * (1 - e^(-k*8))

In both results, subsitute x = e^(-4k) and C = (T(0) - 20)

(i): 5 = C * (1 - x)

(ii): 7 = C * (1 - x^2) = C * (1-x)*(1+x)

Substitute C*(1-x) from (i) into (ii):

(ii): 7 = 5*(1+x) ==> (1+x) = 7/5 ==> x = 2/5

back into (i):

(i): 5 = C * (1 - 2/5) ==> 5 = C * 3/5 ==> C = 25/3

C = T(0) - 20 ==>

T(0) = C + 20 = 25/3 + 20 = 25/3 + 60/3 = 85/3

= 28.3°C

In a front-end collision, a 1500 kg car with shock-absorbing bumpers can withstand a maximumforce of 80 000 N before damage occurs. If the maximum speed for a non-damaging collision is4.0 km/h, by how much must the bumper be able to move relative to the car

Answers

Answer:

The bumper will be able to move by 0.01155m.

Explanation:

The magnitude of deceleration of the car in the front end collision.

[tex]a = \frac{F_m}{m} \\[/tex]

[tex]a = \frac{80000}{1500} \\[/tex]

[tex]a = 53.33[/tex]

This is the deceleration of the car that is generated to stop due to a front end collision.

4 km/h = 1.11 m/s

Now, the initial speed of the bumper in the relation of car, Vi = 0

Now, the initial speed of the bumper in the relation of car, Vf = 1.11 m/s

Use the below equation:

[tex]s = \frac{(Intitial \ speed)^2 – (Final \ speed)^2}{2a} \\[/tex]

[tex]s = \frac{(1.11)^2 – (0)}{2 \times 53.33} \\[/tex]

[tex]s = 0.01155 \\[/tex]

Thus, the bumper can move relative to the car is 0.01155 m .

At what frequency should a 200-turn, flat coil of cross sectional area of 300 cm2 be rotated in a uniform 30-mT magnetic field to have a maximum value of the induced emf equal to 8.0 V

Answers

Answer:

The frequency of the coil is 7.07 Hz

Explanation:

Given;

number of turns of the coil, 200 turn

cross sectional area of the coil, A = 300 cm² = 0.03 m²

magnitude of the magnetic field, B = 30 mT = 0.03 T

Maximum value of the induced emf, E = 8 V

The maximum induced emf in the coil is given by;

E = NBAω

Where;

ω is angular frequency = 2πf

E = NBA(2πf)

f = E / 2πNBA

f = (8) / (2π x 200 x 0.03 x 0.03)

f = 7.07 Hz

Therefore, the frequency of the coil is 7.07 Hz

if an object weighs 550 n and the area is 1 cube​

Answers

12 km is the answer thank me later

Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consider points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?

Answers

Answer:

a

    [tex]z= 2.5 \ m[/tex]

b

   [tex]z = (1 \ m , 4 \ m )[/tex]

Explanation:

From the question we are told that

     Their distance apart is  [tex]d = 5.00 \ m[/tex]

      The  wavelength of each source wave [tex]\lambda = 6.0 \ m[/tex]

Let the distance from source A  where the construct interference occurred be z

Generally the path difference for constructive interference is

              [tex]z - (d-z) = m \lambda[/tex]

Now given that we are considering just the straight line (i.e  points along the line connecting the two sources ) then the order of the maxima m =  0

  so

        [tex]z - (5-z) = 0[/tex]

=>     [tex]2 z - 5 = 0[/tex]

=>     [tex]z= 2.5 \ m[/tex]

Generally the path difference for destructive  interference is

           [tex]|z-(d-z)| = (2m + 1)\frac{\lambda}{2}[/tex]

=>         [tex]|2z - d |= (0 + 1)\frac{\lambda}{2}[/tex]

=>        [tex]|2z - d| =\frac{\lambda}{2}[/tex]

substituting values

          [tex]|2z - 5| =\frac{6}{2}[/tex]

=>      [tex]z = \frac{5 \pm 3}{2}[/tex]

So  

      [tex]z = \frac{5 + 3}{2}[/tex]

      [tex]z = 4\ m[/tex]

and

      [tex]z = \frac{ 5 -3 }{2}[/tex]

=>   [tex]z = 1 \ m[/tex]

=>    [tex]z = (1 \ m , 4 \ m )[/tex]

1. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling without slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height
2. Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling with slipping up an incline with the same initial linear (translational) speed. Which goes farthest up
the incline?
a. the ball
b. the disk
c. the hoop
d. the hoop and the disk roll to the same height, farther
than the ball
e. they all roll to the same height

Answers

Answer:

The hoop

Explanation:

Because it has a smaller calculated inertia of 2/3mr² compares to the disc

The heat of fusion of water is 79.5 cal/g. This means 79.5 cal of energy are required to:_________
A) raise the temperature of 1 g of water by 1K
B) turn 1 g of water to steam .
C) raise the temperature of 1 g of ice by 1 K .
D) melt 1 g of ice .
E) increase the internal energy of 1 g of water by 1 J .

Answers

Answer:

D) melt 1 g of ice

Explanation:

Heat of fusion is the energy required to change the state of a substance from solid state to liquid state at a constant pressure.

Heat of fusion of water occurs when solid ice acquires energy and turn into liquid water through a process known as melting.

Thus, if the heat of fusion of water is 79.5 cal/g, it means 79.5 cal of energy are required to melt 1 g of ice.

D) melt 1 g of ice

Other Questions
What is the Dependent Variable? moho has 25 coins in dime , quarter and nickel . The cain have a value of 3.75 . Moho then remove five of each coin in prder to pay parking meters . How many coins does he left Fontaine and Monroe are forming a partnership. Fontaine invests a building that has a market value of $362,000; the partnership assumes responsibility for a $131,000 note secured by a mortgage on the property. Monroe invests $106,000 in cash and equipment that has a market value of $81,000. For the partnership, the amounts recorded for the building and for Fontaine's Capital account are: A man writes 1 on the first line of his paper, then writes 2 and 3 on the second line, then 4, 5, and 6 on the third, and continues so that on any line n he writes the first n integers following the last integer on line n - 1. What is the sum of the first and last integers on line 17 Create a question you would ask someone talking to you about digitalcitizenship. (Think about what that person would need to know about digitalcitizenship). What is the sum of the complex numbers9- i and 5 i? Bills car gets 30 miles to the gallon. For every gallon of gas it consumes, his car runs 30 miles. Use this information to determine whether this relation is a functionwrite a equation for the number of miles Bill travels, y, in terms how much gas it uses, x. a positive integer n is called special if n is divisible by 4, N+1 is divisible by 5 and n+2 is divisible by 6. how many special integers smaller than 1000 are there? A culture started with 2000 bacteria. after 2 hours it grew to 2400 bacteria. predict how many bacteria will be present after 10 hours. round your answer to the nearest whole number. P=Ae^kt the mass of empty cylinder is 20 gram its mass when its filled completely with water is 30 gram and its mass when its filled completely with unknown liquid is 27 gram find the density of, the unknown liquid Write a CashRegister class that can be used with the RetailItem class that you wrote in Chapter 6's Programming Challenge 4. The CashRegister class should simulate the sale of a retail item. It should have a constructor that accepts a RetailItem object as an argument. The constructor should also accept an integer that represents the quantity of items being purchased. In addition, the class should have the following methods: The getSubtotal method should return the subtotal of the sale, which is the quantity multiplied by the price. This method must get the price from the RetailItem object that was passed as an argument to the constructor. The getTax method should return the amount of sales tax on the purchase. The sales tax rate is 6 percent of a retail sale. The getTotal method should return the total of the sale, which is the subtotal plus the sales tax.Demonstrate the class in a program that asks the user for the quantity of items being purchased and then displays the sales subtotal, amount of sales tax and total. FACTOR THIS EXPRESSION AS FAR AS POSSIBLE -385y IM GIVING THANKS AND BRAINLIST IF CORRECT. PLEASE HELP ME GUYS 1. My brother the dog for a walk at six oclock every morning.A.takesB.makeC.putD.has2. Im not .. the washing up again! Its your turnA.cleaningB.makingC.doingD.taking3. Please dont your bag in the middle of the floorA.leaveB.pickC.findD.lay4. She spends a lot of time . TV.A.to watchB.watch C.watchingD.watches5. Mikes interested ......... fishing.A.onB.aboutC.inD.at6. Im thinking studying law.A.aboutB.ofC.atD.on7. Of the three students, Harry is one. The others have too many mistakes.A.The most carefulB.the most carelessC.More careful thanD.More careful 8. It was the dream Ive ever had. I was really frightened.A.badestB.worseC.worstD.he worst9. Can you recommend . good resaurant?A.theB.xC.aD.some10. Ive cleaned the floor. Its wetA.alreadyB.justC.yetD.never "A thin film with an index of refraction of 1.50 is placed in one of the beams of a Michelson interferometer. If this causes a shift of 8 bright fringes in the pattern produced by light of wavelength 540 nm, what is the thickness of the film?" Do not allow legs to bow inward or outward" is an appropriate cue to give clients during which of the following movements? Your grandfather has great faith in bonds and has heard about some "high yield bonds" that are available. He has asked you for your opinion. What advice will you give him? Describe the reaction of an acid with an alkali.? Choose an animal species that live in Antarctica. Using the Internet, research five interesting facts about the animal you choose. Describe what you learned. P.S (should be approximately 20-25 lines) Draw two constitutional isomers that share the molecular formula C3H8S. Your structures will have the same molecular formula but will have different connectivities. How much cement is needed for a hole 0.4m wide and 1m long.