What is the direction of the net gravitational force on the mass at the origin due to the other two masses?

Answers

Answer 1

Answer:

genus yds it's the

Explanation:

xmgxfjxfjxgdfjusufzjyhmfndVFHggssjtjhryfjftjsrhrythhrsrhrhsfhsgdagdah vhj


Related Questions

A mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always pointed toward a wall in a big hall. Find the potential energy of a particle due to this force when it is at a distance x from the wall, assuming the potential energy at the wall to be zero.

Answers

Answer:

it will be 10x

Explanation:

workdone(potential energy before it hits the wall)= horizontal force × distance

=10× x = 10x joules

A mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always pointed toward a wall in a big hall.The potential energy of a particle due to this force is  10x.

What is force?

A force is an effect that can alter an object's motion according to physics. An object with mass can change its velocity, or accelerate, as a result of a force. An obvious way to describe force is as a push or a pull. A force is a vector quantity since it has both magnitude and direction.

Given in the question a mysterious constant force of 10 N acts horizontally on everything. The direction of the force is found to be always pointed toward a wall in a big hall the potential energy,

Work done (potential energy before it hits the wall)

= horizontal force × distance

=10× x = 10x joules

The potential energy of a particle due to this force is  10x.

To learn more about force refer to the link:

brainly.com/question/13191643

#SPJ2

An electron is trapped between two large parallel charged plates of a capacitive system. The plates are separated by a distance of 1 cm and there is vacuum in the region between the plates. The electron is initially found midway between the plates with a kinetic energy of 11.2 eV and with its velocity directed toward the negative plate. How close to the negative plate will the electron get if the potential difference between the plates is 100 V? (1 eV = 1.6 x 10-19 J)

Answers

Answer:

The electron will get at about 0.388 cm (about 4 mm) from the negative plate before stopping.

Explanation:

Recall that the Electric field is constant inside the parallel plates, and therefore the acceleration the electron feels is constant everywhere inside the parallel plates, so we can examine its motion using kinematics of a constantly accelerated particle. This constant acceleration is (based on Newton's 2nd Law:

[tex]F=m\,a\\q\,E=m\,a\\a=\frac{q\,E}{m}[/tex]

and since the electric field E in between parallel plates separated a distance d and under a potential difference [tex]\Delta V[/tex], is given by:

[tex]E=\frac{\Delta\,V}{d}[/tex]

then :

[tex]a=\frac{q\,\Delta V}{m\,d}[/tex]

We want to find when the particle reaches velocity zero via kinematics:

[tex]v=v_0-a\,t\\0=v_0-a\,t\\t=v_0/a[/tex]

We replace this time (t) in the kinematic equation for the particle displacement:

[tex]\Delta y=v_0\,(t)-\frac{1}{2} a\,t^2\\\Delta y=v_0\,(\frac{v_0}{a} )-\frac{a}{2} (\frac{v_0}{a} )^2\\\Delta y=\frac{1}{2} \frac{v_0^2}{a}[/tex]

Replacing the values with the information given, converting the distance d into meters (0.01 m), using [tex]\Delta V=100\,V[/tex], and the electron's kinetic energy:

[tex]\frac{1}{2} \,m\,v_0^2= (11.2)\,\, 1.6\,\,10^{-19}\,\,J[/tex]

we get:

[tex]\Delta\,y= \frac{1}{2} v_0^2\,\frac{m (0.01)}{q\,(100)} =11.2 (1.6\,\,10^{-19})\,\frac{0.01}{(1.6\,\,10^{-19})\,(100)}=\frac{11.2}{10000} \,meters=0.00112\,\,meters[/tex]Therefore, since the electron was initially at 0.5 cm (0.005 m) from the negative plate, the closest it gets to this plate is:

0.005 - 0.00112 m = 0.00388 m [or 0.388 cm]

The charger for your electronic devices is a transformer. Suppose a 60 Hz outlet voltage of 120 V needs to be reduced to a device voltage of 3.0 V. The side of the transformer attached to the electronic device has 45 turns of wire.
How many turns are on the side that plugs into the outlet?

Answers

Answer:

N₁ = 1800 turns

So, the side of the transformer that plugs into the outlet has 1800 turns.

Explanation:

The transformer turns ratio is given by the following equation:

V₁/V₂ = N₁/N₂

where,

V₁ = Voltage of outlet = 120 V

V₂ = Device Voltage = 3 V

N₁ = No. of turns on outlet side = ?

N₂ = No. of turns on side of device = 45

Therefore,

120 V/3 V = N₁/45

N₁ = (40)(45)

N₁ = 1800 turns

So, the side of the transformer that plugs into the outlet has 1800 turns.

A 1300-turn coil of wire 2.40 cm in diameter is in a magnetic field that increases from 0 T to 0.120 T in 9.00 ms . The axis of the coil is parallel to the field. What is the emf of the coil?

Answers

Answer:

The induced emf in the coil is 7.843 V

Explanation:

Given;

number of turns of the coil, N = 1300 turn

diameter of the coil, d = 2.4 cm = 0.024 m

initial magnetic field, B₁ = 0 T

final magnetic field, B₂ = 0.12 T

change in time, dt = 9.0 ms = 9 x 10⁻³ s

Area of the coil is given by;

A = πr²

radius of the coil, r = 0.024 / 2

radius of the coil, r = 0.012 m

A = π(0.012)²

A = 4.525 x 10⁻⁴ m²

The induced emf in the coil is given by;

E = NA(dB/dt)

E =  NA [(B₂ - B₁) /dt]

E = 1300 x 4.525 x 10⁻⁴ (0.12 - 0) / (9 x 10⁻³)

E = 7.843 V

Therefore, the induced emf in the coil is 7.843 V

The atomic number of a nucleus increases during which nuclear reactions?

Answers

Answer:

Option (A) : Nuclear Fusion and Beta Decay (electron emission)

Answer:

A : Fusion followed by beta decay (electron emission)

Explanation:

Ap3x

A sinewave has a period (duration of one cycle) of 645 μs (microseconds). What is the corresponding frequency of this sinewave, in kHz

Answers

The corresponding frequency of this sinewave, in kHz, expressed to 3 significant figures is: 155 kHz.

Given the following data:

Period = 645 μs

Note: μs represents microseconds.

Conversion:

1 μs = [tex]1[/tex] × [tex]10^-6[/tex] seconds

645 μs = [tex]645[/tex] × [tex]10^-6[/tex] seconds

To find corresponding frequency of this sinewave, in kHz;

Mathematically, the frequency of a waveform is calculated by using the formula;

[tex]Frequency = \frac{1}{Period}[/tex]

Substituting the value into the formula, we have;

[tex]Frequency = \frac{1}{645 * 10^-6}[/tex]

Frequency = 1550.39 Hz

Next, we would convert the value of frequency in hertz (Hz) to Kilohertz (kHz);

Conversion:

1 hertz = 0.001 kilohertz

1550.39 hertz = X kilohertz

Cross-multiplying, we have;

X = [tex]0.001[/tex] × [tex]1550.39[/tex]

X = 155039 kHz

To 3 significant figures;

Frequency = 155 kHz

Therefore, the corresponding frequency of this sinewave, in kHz is 155.

Find more information: brainly.com/question/23460034

What happens to the deflection of the galvanometer needle (due to moving the magnet) when you increase the number of loops

Answers

Answer:

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil which will increase total induced electromotive force

Explanation:

galvanometer is an instrument that can detect and measure small current in an electrical circuit.

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil. If it is move in a way into the coil,the needle deflect in that way and if it move in another way, it will deflect in the other way.

The total induced emf is equal to the emf induced in each loop by the changing magnetic flux, then multiplied by the number of loops and an increase in the number of loops will cause increase in the total induced emf.

An ac source of period T and maximum voltage V is connected to a single unknown ideal element that is either a resistor, and inductor, or a capacitor. At time t = 0 the voltage is zero and increasing toward a maximum. At time t = T/4 the current in the unknown element is equal to zero, and at time t = T/2 the current is I = -I max, where Imax is the current amplitude. What is the unknown element?
a. a resistor
b. an inductor or a capacitor
c. an inductor
d. a capacitor

Answers

The answer is d.a capacitor

How do for-profit and nonprofit fitness centers compare with each other?


For-profit centers offer more luxury services than nonprofit centers.For-profit centers offer more luxury services than nonprofit centers. , ,

For-profit centers have lower membership fees than nonprofit centers.For-profit centers have lower membership fees than nonprofit centers. , ,

For-profit centers place more emphasis on weight lifting than nonprofit centers.For-profit centers place more emphasis on weight lifting than nonprofit centers. , ,

For-profit centers are more common in low-income communities than nonprofit centers.

Answers

Comparison of For-profit and Non-profit Fitness Centers

This is how they compare with each other: For-profit centers offer more luxury services than nonprofit centers.

For-profit fitness centers are fitness centers that offer their services to cover their costs and make some profits.  They are business entities that  generate income for their shareholders.  Their fees are based on cost plus profit.  This approach enables them to remain sustainable as business ventures.

They are not like non-profit fitness centers, which may offer their services for free or at cost.  Sometimes, the nonprofit centers may not even cover their fixed and operational costs.  They are usually located in low-income communities, unlike for-profit fitness centers, which are mainly located in rich-income communities.

Considering their clientele, for-profit centers provide modern and better facilities to satisfy their rich-income clients.

Thus, these for-profit centers offer more luxury services than their non-profit counterparts.

For more information about how for-profit centers base their charges, see https://brainly.com/question/21302488.

A radar pulse returns 3.0 x 10-4 seconds after it is sent out, having been reflected by an object. What is the distance between the radar antenna and the object

Answers

Answer:

The distance is  [tex]D = 45000 \ m[/tex]

Explanation:

From the question we are told that

    The time taken is  [tex]t = 3.0 *10^{-4 } \ s[/tex]

   

Generally the speed of the radar is equal to the speed of light and this has a value  

      [tex]c = 3.0*10^{8} \ m /s[/tex]

Now the distance covered by the to and fro movement of the radar is mathematically evaluated as

      [tex]d = c * t[/tex]

=>    [tex]d = 3.0*10^{8} * 3.0*10^{-4}[/tex]

=>  [tex]d = 90000 \ m[/tex]

Therefore the distance between the radar antenna and the object is  

      [tex]D = \frac{d}{2}[/tex]

       [tex]D = \frac{ 90000}{2}[/tex]

      [tex]D = 45000 \ m[/tex]

The distance between the radar antenna and the object will be 45000 m.

What is a radar antenna?

A radar antenna is a device that sends out radio waves and listens for their reflections. The ability of an antenna to identify the exact direction in which an item is placed determines its performance.

The given data in the problem is;

t is the time=  3.0 x 10⁻⁴

d is the distance between the radar antenna and the object=?

c is the peed of light=3×10⁸ m/sec

The radar's speed is usually equal to the speed of light, and this has a value. The distance covered by the radars to and fro movement is now calculated mathematically as

[tex]\rm d= c \times t \\\\ \rm d= 3.0 \times 10^8 \times 3.0 \times 10^{-4} \\\\ d=90000 \ m[/tex]

As a result, the radar antenna's distance from the target is

[tex]\rm D=\frac{d}{2} \\\\ \rm D=\frac{90000}{2} \\\\ \rm D=\ 45000 \ m[/tex]

Hence the distance between the radar antenna and the object will be 45000 m.

To learn more about the radar antena refer to the link;

https://brainly.com/question/24067190

Your favorite radio station broadcasts at a frequency of 91.5 MHz with a power of 11.5 kW. How many photons does the antenna of the station emit in each second?

Answers

Answer:

Number of photons emit per second = 1.9 × 10²⁹  (Approx)

Explanation:

Given:

Frequency = 91.5 MHz

Power = 11.5 Kw = 11,500 J/s

Find:

Number of photons emit per second

Computation:

Total energy with frequency (E) = hf

Total energy with frequency (E) = 6.626×10⁻³⁴  × 91.5×10⁶

Total energy with frequency (E) = 6.06×10⁻²⁶ J

Number of photons emit per second = 11,500 / 6.06×10⁻²⁶

Number of photons emit per second = 1897.689 × 10²⁶

Number of photons emit per second = 1.9 × 10²⁹  (Approx)

The primary difference between a barometer and a manometer is
A. a barometer is used to measure atmospheric pressure, and a manometer is used to measure gauge pressure.
B. a barometer uses mercury, while a manometer can use any liquid. a barometer is used to measure atmospheric pressure, and a manometer is used to measure absolute pressure.
C a barometer reads in mm, while a manometer reads in Pa.
D a barometer can measure either positivee or negative pressure, while a manometer only
E positive pressure. measures

Answers

Answer:

a barometer is used to measure atmospheric pressure, and a manometer is used to measure gauge pressure.

Explanation:

A barometer measures air pressure at any locality with sea level as the reference.

However, a manometer is used to measure all pressures especially gauge pressures. Thus, if the aim is to measure the pressure at any point below a fluid surface, a barometer is used to determine the air pressure. The manometer may now be used to determine the gauge pressure

The algebraic sum of these two values gives the absolute pressure.

The filament in the bulb is moving back and forth, first pushed one way and then the other. What does this imply about the current in the filament

Answers

Answer:

energy carried by the current is given by the pointyng vector

Explanation:

The current is defined by

       i = dQ / dt

this is the number of charges per unit area over time.

The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.

But the energy carried by the current is given by the pointyng vector of the electromagnetic wave

            S = 1 / μ₀ EX B

It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement

What is the displacement of the object after 3 seconds?

Answers

Answer:

3 meters

Explanation:

The magnetic flux that passes through one turn of a 8-turn coil of wire changes to 5.0 Wb from 8.0 Wb in a time of 0.098 s. The average induced current in the coil is 140 A. What is the resistance of the wire

Answers

Answer:

Resistance is 1.75 ohms

Explanation:

Magnetic flux:

[tex]{ \phi{ = NBA}}[/tex]

N is number of turns, N = 8

B is magnetic flux

A is area of projection.

From faradays law:

[tex]E = - \frac{ \triangle \phi}{t} [/tex]

where E is the Electro motive force.

But E = IR

where I is current and R is resistance:

[tex]IR = \frac{( \phi_{1} - \phi _{2}) }{t} \\ \\ 140 \times R = \frac{8 \times (8 - 5)}{0.098} \\ \\ R = \frac{24}{0.098 \times 140} \\ \\ resistance = 1.75 \: ohms[/tex]

Object A, with heat capacity CA and initially at temperature TA, is placed in thermal contact with object B, with heat capacity CB and initially at temperature TB. The combination is thermally isolated. If the heat capacities are independent of the temperature and no phase changes occur, the final temperature of both objects is

Answers

Answer:

d) (CATA + CBTB) / (CA + CB)

Explanation:

According to the given situation, the final temperature of both objects is shown below:-

We assume T be the final temperature

while m be the mass

So it will be represent

m CA (TA - T) = m CB (T - TB)

or we can say that

CATA - CA T = CB T - CBTB

or

(CA + CB) T = CATA + CBTB

or

T = (CA TA + CBTB) ÷ (CA + CB)

Therefore the right answer is d

The final temperature of both objects is [tex]T = \frac{C_AT_A+ C_BT_B}{C_B + C_A} \\\\[/tex].

The given parameters;

heat capacity of object A = CAinitial temperature of object A = TAheat capacity of object B = CBinitial temperature of object B = TB

The final temperature of both objects is calculated as follows;

heat lost by object A is equal to heat gained by object B

[tex]mC_A (T_A - T) = mC_B(T- T_B)\\\\C_AT_A-C_AT = C_BT - C_BT_B\\\\C_BT+C_AT = C_AT_A+ C_BT_B\\\\T(C_B + C_A) = C_AT_A+ C_BT_B \\\\T = \frac{C_AT_A+ C_BT_B}{C_B + C_A} \\\\[/tex]

Thus, the final temperature of both objects is [tex]T = \frac{C_AT_A+ C_BT_B}{C_B + C_A} \\\\[/tex].

Learn more here:https://brainly.com/question/17163987

In a distant galaxy, whose light is just arriving from 10 billion light years away, our spectroscope should reveal that the most common element is

Answers

Answer:

In a distant galaxy, whose light is just arriving from 10 billion light years away, our spectroscope should reveal that the most common element is HELIUM

A liquid is poured into a vessel to a depth of 16cm when viewed from the top, the bottom appears to be raised 4cm. What is the refractive index of the liquid?

Answers

Answer:

Solution

Verified by Toppr

Correct option is

C

3 cm

RI=apparent depthreal depth

Substituting, 34=apparentdepth12

Therefore, apparent depth=412×3=9

The height by which it appears to be raised is 12−9=3cm

Was this answer helpful?

71

0

SIMILAR QUESTIONS

A coin is placed at the bottom of a glass tumbler and then water is added. It appeared that the depth of the coin has been reduced because

Medium

View solution

>

A tank is filled with water to a height of 12.5 cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4 cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?

A stone is dropped from the upper observation deck of a tower, 50 m above the ground. (Assume g = 9.8 m/s2.) (a) Find the distance (in meters) of the stone above ground level at time t. h(t) = (b) How long does it take the stone to reach the ground? (Round your answer to two decimal places.) s (c) With what velocity does it strike the ground? (Round your answer to one decimal place.) m/s (d) If the stone is thrown downward with a speed of 9 m/s, how long does it take to reach the ground? (Round your answer to two decimal places.)

Answers

Answer:

A. Using displacement =Ut + 1/2gt²

=> 0 + 1/2 (-9.8)t²

= -4.9t²

So

h(t) = 50+ displacement

= 50 - 4.9t²

B. To reach the ground

h(t) = 0

So

50-4.9t²= 0

t = √ (50/4.9)

= 3.2s

C. Using

V = u+ gt

U= 0

V= - 9.8(3.2)

= 31.4m/s

D. If u = -9m/s

Then s = ut + 1/2gt²

5t- 1/2gt²

But distance from the ground is

=.> 50-5t- 4.8t²= 0

So t solving the quadratic equation

t= 3.58s

(a) The distance of the stone above the ground level at time t is [tex]h(t) = 50 - 4.9t^2[/tex]

(b) The time taken for the stone to strike the ground is 3.19 s.

(c) The velocity of the stone when it strikes the ground is 31.4 m/s.

(d) The time taken for the stone to reach the ground when thrown at the given speed is 2.41 s.

The given parameters;

height above the ground, h₀ = 50 m

The distance of the stone above the ground level at time t is calculated as;

[tex]h(t) = h_0 - ut - \frac{1}{2} gt^2\\\\h(t) = 50 - 0 -0.5\times 9.8t^2\\\\h(t) = 50 - 4.9t^2[/tex]

The time taken for the stone to strike the ground is calculated as;

[tex]t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2\times 50}{9.8} } \\\\t = 3.19 \ s[/tex]

The velocity of the stone when it strikes the ground is calculated as;

[tex]v =u + gt\\\\v = 0 + 3.2 \times 9.8\\\\v = 31.4 \ m/s[/tex]

The time taken for the stone to reach the ground when thrown at speed of 9 m/s is calculated as;

[tex]50 = 9t + \frac{1}{2} (9.8)t^2\\\\50 = 9t + 4.9t^2\\\\4.9t^2 + 9t - 50 = 0\\\\a = 4.9 \, \ b = 9, \ \ c = -50\\\\solve \ the \ quadratic \ equation\ using \ formula \ method\\\\t = \frac{-b \ \ + /- \ \ \sqrt{b^2 - 4ac} }{2a} \\\\t = \frac{-9 \ \ + /- \ \ \sqrt{(9)^2 - 4(4.9 \times -50)} }{2(4.9)} \\\\t = 2.41 \ s \ \ or \ \ - 4.24 \ s[/tex]

Thus, the time taken for the stone to reach the ground when thrown at the given speed is 2.41 s.

Learn more here:https://brainly.com/question/9527588

Is the study of the moons places applied or pure science

Answers

Answer:

It is pure science

Explanation:

A basic knowledge for the discovery of unknown laws based on well controlled experiments and deductions from demonstrated facts or truths.

A horizontal circular platform rotates counterclockwise about its axis at the rate of 0.945 rad/s. You, with a mass of 69.7 kg, walk clockwise around the platform along its edge at the speed of 1.01 m/s with respect to the platform. Your 20.7 kg poodle also walks clockwise around the platform, but along a circle at half the platform's radius and at half your linear speed with respect to the platform. Your 17.7 kg mutt, on the other hand, sits still on the platform at a position that is 3/4 of the platform's radius from the center. Model the platform as a uniform disk with mass 93.1 kg and radius 1.93 m. Calculate the total angular momentum of the system.

Answers

Answer:

317.22

Explanation:

Given

Circular platform rotates ccw 93.1kg, radius 1.93 m, 0.945 rad/s

You 69.7kg, cw 1.01m/s, at r

Poodle 20.2 kg, cw 1.01/2 m/s, at r/2

Mutt 17.7 kg, 3r/4

You

Relative

ω = v/r

= 1.01/1.93

= 0.522

Actual

ω = 0.945 - 0.522

= 0.42

I = mr^2

= 69.7*1.93^2

= 259.6

L = Iω

= 259.6*0.42

= 109.4

Poodle

Relative

ω = (1.01/2)/(1.93/2)

= 0.5233

Actual

ω = 0.945- 0.5233

= 0.4217

I = m(r/2)^2

= 20.2*(1.93/2)^2

= 18.81

L = Iω

= 18.81*0.4217

= 7.93

Mutt

Actual

ω = 0.945

I = m(3r/4)^2

= 17.7(3*1.93/4)^2

= 37.08

L = Iω

= 37.08*0.945

= 35.04

Disk

I = mr^2/2

= 93.1(1.93)^2/2

= 173.39

L = Iω

= 173.39*0.945

= 163.85

Total

L = 109.4+ 7.93+ 36.04+ 163.85

= 317.22 kg m^2/s

Figure (3) shows a car travelling along the route PQRST in 30 minutes. What is the average speed of the car in km/hour?

Answers

Answer:

60 km/hour.

Explanation:

We'll begin by calculating the total distance traveled by the car. This is illustrated below:

Total distance traveled = sum of distance between PQRST

Total distance = 10 + 5 + 10 + 5

Total distance = 30 km

Next, we shall convert 30 mins to hour. This can obtained as follow:

Recall:

60 mins = 1 hour

Therefore,

30 mins = 30/60 = 0.5 hour.

Finally, we shall determine the average speed of the car as follow:

Distance = 30 km

Time = 0.5 hour

Speed =?

Speed = distance /time

Speed = 30/0.5

Speed = 60 km/hour

Therefore, the speed of the car is 60 km/hour.

"Two waves of the same frequency have amplitudes 1.00 and 2.00. They interfere at a point where their phase difference is 60.0°. What is the resultant amplitude?"

Answers

Answer:

The resultant amplitude of the two waves is 2.65.

Explanation:

Given;

amplitude of the first wave, A₁ = 1

amplitude of the second wave, A₂ = 2

phase difference of the two amplitudes, θ = 60.0°.

The resultant amplitude of two waves after interference is given by;

[tex]A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2Cos \theta} \\\\A = \sqrt{1^2 + 2^2 + 2(1)(2)Cos 60} \\\\A= 2.65[/tex]

Therefore, the resultant amplitude of the two waves is 2.65.

A locomotive is pulling three train cars along a level track with a force of 100,000N. The car next to the locomotive has a mass of 80,000kg, next one, 50,000kg, and the last one, 70,000 kg. you can neglect the friction on the cars being pulled.
A) what if the magnitude of the force between that the 80,000-kg car exerts on the 50,000-kg car?
B) what is the magnitude of the force that the 50,000-kg car exerts on the 70,000-kg car?

Answers

Answer:

a) 60000 N

b) 35000 N

Explanation:

Force from locomotive = 100000 N

mass of first car = 80000 kg

mass of second car = 50000 kg

mass of third car = 70000 kg

friction is neglected in this system

Total mass of the cars = 80000 + 50000 + 70000  = 200000 kg

All the car in the system will accelerate at the same rate since they are pulled by the same force

We know that force F = ma

where

a is the acceleration of the cars

m is the total mass in the system

from this we can say that

a = F/m

a = 100000/200000 = 0.5 m/s^2

a) The total mass involved in this case = mass of the last two cars after the 80000 kg car =  50000 + 70000 = 120000 kg

therefore force exerted F = ma

F = 0.5 x 120000 = 60000 N

b) The total mass in this case = mass of the third car only = 70000 kg

F = ma

F = 70000 x 0.5 = 35000 N

Experiment to find ways to make rainbows.
a) Insert at least one setup where light passing through a prism gives a rainbow and describe why a rainbow is formed.
b) Explain why only some types of light will yield rainbows.

Answers

Answer:

Explanation:

a) To get a rainbow from a prism arrangement, we will need

A triangular prismA black cardboard boxA source of white light (light from the window will suffice)A pocket knife

First, you cut a slit in one end of the cardboard with the pen knife.

Next you open up a space on top of the cardboard through which you can observe the experiment and its result.

Next, you place the triangular prism with its slant face facing the the cut slit.

Finally, position the slit to face the light from the open window, and adjust the prism till the projected bands of colored light (rainbow) is very much obvious on the other end of the box, opposite the slit.

b) For a light to yield rainbow, it most be composed of different component colors of light. The colors of light is due to the difference in wavelength, and dispersion is due to the different in the wavelengths of the component light. So to get rainbow from a light source, the light must not be monochromatic. This means that only light composed of component light of different colors can produce rainbow. Light from the sun for example is composed of 7 distinct colors of light, and white light can be created with just three colors; blue, green, and red light.

There are 5510 lines per centimeter in a grating that is used with light whose wavelegth is 467 nm. A flat observation screen is located 1.03 m from the grating. What is the minimum width that the screen must have so the centers of all the principal maxima formed on either side of the central maximum fall on the screen

Answers

Answer:

1.696 nm

Explanation:

For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,

dsinθ = mλ = (1)λ = λ

dsinθ = λ

sinθ = λ/d.

Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m

From trig ratios 1 + cot²θ = cosec²θ

1 + (1/tan²θ) = 1/(sin²θ)

substituting the values of sinθ and tanθ we have

1 + (D/w)² = (d/λ)²

(D/w)² = (d/λ)² - 1

(w/D)² = 1/[(d/λ)² - 1]

(w/D) = 1/√[(d/λ)² - 1]

w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹  = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.

w is also the distance from the center to the other principal maximum on the other side.

So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm

So, the minimum width of the screen must be 1.696 nm

which one is more powerful hydrogen bomb or atom bomb and why?​

Answers

Hydrogen bomb is more powerful than atom bomb

Hydrogen has a calorie value of 150000KJ .It is very much than nuclear bomb or atom bombScientists also told that Hydrogen bomb is more powerful.But both bombs are destructive.

An object on a level surface experiences a horizontal force of 12.7 N due to kinetic friction. The coefficient of kinetic friction is 0.42.
What is the mass of the object? (Express your answer to two significant figures)kg

Answers

Answer:

The mass of the object is 3.08 kg.

Explanation:

The horizontal force is12.7 N and the coefficient of the kinetic fraction are 0.42. Now we have to compute the mass of the object. Thus, use the below formula to find the mass of the object.

Let the mass of the object = m.

The coefficient of kinetic friction, n = 0.42

Therefore,  

Force, F = n × mg

12.7 = 0.42 × 9.8 × m

m = 3.08 kg

The mass of the object is 3.08 kg.

A chemist must dilute 55.6 ml of 1.48 M aqueous silver nitrate (AgNO3)solution until the concentration falls to 1.00 M. He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in milliliters. Round your answer to 3 significant digits.

Answers

Answer:

82.2 mL

Explanation:

The process of adding water to a solution to make it more dilute is known as dilution. The formula for dilution is;

C1V1=C2V2

Where;

C1= concentration of stock solution

V1= volume of stock solution

C2= concentration of dilute solution

V2= volume of dilute solution

V2= C1V1/C2

V2= 1.48 × 55.6/ 1.0

V2= 82.2 mL

Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 55.3 kg, down a theta= 79.6º slope at constant acceleration a=-4.3 m/s2, as shown in Figure (here we assume the positive direction is going down the slope. So the given acceleration is a negative value, it means its direction is going up the slope, slowing down as it moving downward). So, the coefficient of friction between the sled and the snow is 0.100. How many Joules of work is done by the tension in the rope as the sled moves 2.1 m along the hill? Use g= 10 m/s2.

Answers

The tension in the rope is doing a work of 1662.544 joules as the sled moves 2.1 meters along the hill.

In this case, we need to construct the Free Body Diagram of the sled-victim System in order to determine what Forces are doing Work. Then, we construct the respective Energy equation by Newton's Laws of Motion, Work-Energy Theorem and definition of Work.

Given that system experiments an uniform Acceleration, we must solve the resulting model for the work done by the Tension in the rope.

From the Free Body Diagram (see image attached), we see that both Weight of the sled and Friction between sled and snow are doing work in favor of gravity, whereas Tension forces is against gravity. Normal force is not doing work as its direction is perpendicular to the direction of motion. The energy equation of this system is:

[tex]-W_{T} + \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta = m\cdot a\cdot s[/tex] (1)

Where:

[tex]W_{T}[/tex] - Work done by tension, in joules.

[tex]m[/tex] - Mass of the sled-victim system, in kilograms.

[tex]\mu[/tex] - Coefficient of kinetic friction, no unit.

[tex]g[/tex] - Gravitational acceleration, in meters per square second.

[tex]s[/tex] - Travelled distance, in meters.

[tex]\theta[/tex] - Slope angle, in sexagesimal degrees.

[tex]a[/tex] - Net acceleration of the sled-victim system, in meters per square second.

If we know that [tex]\mu = 0.100[/tex], [tex]m = 55.3\,kg[/tex], [tex]g = 10\,\frac{m}{s^{2}}[/tex], [tex]s = 2.1\,m[/tex], [tex]\theta = 79.6^{\circ}[/tex] and [tex]a = -4.3\,\frac{m}{s^{2}}[/tex], then the work done by the tension in the rope is:

[tex]-W_{T} + \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta = m\cdot a\cdot s[/tex]

[tex]W_{T} = \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta -m\cdot a\cdot s[/tex]

[tex]W_{T} = (0.100)\cdot \left(55.3\,kg\right)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (2.1\,m)\cdot \cos 79.6^{\circ} + \left(55.3\,kg\right)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (2.1\,m)\cdot \sin 79.6^{\circ} - (55.3\,kg)\cdot \left(-4.3\,\frac{m}{s^{2}} \right) \cdot (2.1\,m)[/tex]

[tex]W_{T} = 1662.544\,J[/tex]

The tension in the rope is doing a work of 1662.544 joules as the sled moves 2.1 meters along the hill.

Related questions:

https://brainly.com/question/22599382

https://brainly.com/question/15447861

Other Questions
Select the correct answer. What did Alexander Hamilton plan in 1783? A. Shays's Rebellion B. Newburgh Conspiracy C. The Virginia Plan D. The New Jersey Plan guys pls answer this question for me pls The freedom of resource owners to dispose of their resources as they think best; of workers to enter any line of work for which they are qualified; and of consumers to spend their incomes in whatever way they feel is most appropriate: In your own words, define Quadratic Equation. How many solutions does a Quadratic Equation have? why do we respect eavh other (a) A body of mass 2kg is placed on a rough plane inclined at an angle of 30 to thehorizontal. The coefficient of friction between the body and the plane is 0.25. Find theleast force needed to prevent the body from slipping down the plane if this force actsupwards at an angle of 30 to the line of greatest slope. The audience knows that the masked young man is romeo entering the capulets ball is romeo a montague but the characters do not this creates A missile travels at a constant rate of 15,000feet per minute. How many hours would ittake to travel 9.0 X 10^8(ten to the 8th power)feet? Question 4 of 10The density of ocean water varies due to:O A. Temperature and Air PressureB. Salinity and TemperatureOC. Salinity and Hadley CellsOD. Hadley Cells and Air Pressure PLZ HLEP QUICK!!! Which of the following is an arithmetic sequence? -2, 4, -6, 8, ... -8, -6, -4, -2, ... 2, 4, 8, 16, ... what are the property of the image formed by plane mirror of class 10 How did the actions of pacifists reveal US attitudes about entry into World War I?Pacifist labor strikes showed that the US would not be able to support the war effort.Pacifist testimony in Congress showed that entering the war would hurt American trade.Pacifist letters encouraged leaders to enter the war.Pacifist protests showed that many people opposed US entry into the war. For example, if the total cost of producing three units of output is $2,498 and the total cost of producing four units of output is $3,087, then the marginal cost of the fourth unit is Find a vector equation and parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5. Could you help with maths please? All shown on the picture :) One of the first astronomical monuments. It is located in England aLondon TOwer bMerlin's Castle cPyramid of Geza dEiffel Tower eStonehenge Would you be solo like me or would u like to not be alone? Weekly wages at a certain factory arenormally distributed with a mean of$400 and a standard deviation of $50.Find the probability that a workerselected at random makes between$450 and $500. Examples of a/an _______ observation are 37 m, 9.37 s, and 100 mph. a. You have a stock solution of 14.8 M NH3. How many milliliters of this solution should you dilute to make 1000.0 mL of 0.250 M NH3?b. If you take a 10.0 mL portion of the stock solution and dilute it to a total volume of 0.500 L, what will be the concentration of the final solution?