When a ray of light passes from glass to water it is?

Answers

Answer 1

Answer:

[tex]\huge\boxed{Refracted}[/tex]

Explanation:

When a ray of light passes from glass to water, it

1) is Slightly refracted (bending of light)

2) moves away from the normal.

Whenever a light ray travels from a denser medium to a rarer medium, it bends away from the normal.

Answer 2

Answer:

refraction

Explanation:


Related Questions

In part A of the lab we see that the magnetic field of a long straight wire __. a. increases with distance in a linear relationship b. increases with distance in a non-linear relationship c. decreases with distance in an inverse (1/r) relationship d. decreases with distance in an inverse-square (1/r2) relationship

Answers

Explanation:

a long straight wire __. a. increases with distance in a linear relationship b. increases with distance in a non-linear relationship c. decreases with distance in an inverse (1/r) relationship d. decreases with distance in an inverse-square (1/r2) relationship

In part A of the lab, we see the magnetic field of a long straight wire decreases with distance in an inverse (1/r) relationship, therefore the correct option is C.

What is a magnetic field?

A magnetic field could be understood as an area around a magnet, magnetic material, or an electric charge in which magnetic force is exerted. The SI unit of the magnetic field is tesla.

For a  long straight wire carrying the current, the relation with the distance as given below

B = μI/(2πr)

where B is the magnetic field

μ is the permeability of the free space

r is the distance from the wire

As we can see from the above relation

the magnetic field of a long straight wire decreases with distance in an inverse (1/r) relationship, therefore the correct answer is option C.

Learn more about the magnetic fields from here

brainly.com/question/23096032

#SPJ2

Which is a “big idea” for space and time? Energy can be transferred but not destroyed. Forces describe the motion of the universe. The universe is very big and very old. The universe consists of matter.

Answers

Answer:

Explanation:

That Universe Consists of Matter

Which sequence shows the chain of energy transfers that create surface currents on the ocean?

Answers

Answer:

The correct answer is A. The sun is the energy source of the surface currents in the ocean

The energy transfer starts from solar energy , then wind energy and finally wind energy is the cause of surface current .

What is surface current ?

Surface currents are currents that are located in the upper feet of the ocean , they are simply how water moves from one place to another . Pattern of surface current are determined by wind direction .

Surface currents are formed by global wind system that are fueled by energy from the sun . Because of heating effect of sun , the earth's atmosphere gets warmed up . As we know , warm air is lighter then cool air , it rises up and create low pressure near the equator because of this wind causes surface currents the ocean .

hence , The energy transfer starts from solar energy , then wind energy and finally wind energy is the cause of surface current .

learn more about surface current

https://brainly.com/question/1255202?referrer=searchResults

#SPJ3

One charge is fixed q1 = 5 µC at the origin in a coordinate system, a second charge q2 = -3.2 µC the other is at a distance of x = 90 m from the origin.

What is the potential energy of this pair of charges?

Answers

Answer:

5.4uC

Explanation:

It is just as difficult to accelerate a car on a level horizontal surface on the Moon as it is here on Earth because

Answers

Answer:

Mass of the car is independent of gravity

Explanation:

Here, we want to state the reason why even though we have the acceleration due to gravity absent on the moon, it is still difficult to accelerate a car on a level horizontal level on the moon.

The answer to this is that the mass of the car that we want to accelerate is independent of gravity.

Had it been that gravity has an effect on the mass of the said car, then we might conclude that it will not be difficult to accelerate the car on a horizontal surface on the moon.

But due to the fact that gravity has no effect on the mass of the car to be accelerated, then the problem we have on earth with accelerating the car is the same problem we will have on the moon if we try to accelerate the car on a horizontal level surface.

Specular reflection occurs where the light ray in the glass strikes the reflector. If no light is to enter the water, we require that there be reflection only. Which phenomenon prevents the light from entering the water?

Answers

Answer:

The critical angle phenomenon.

Explanation:

Critical angle in optics is the smallest angle of incidence of a wave, that will give total reflection of the wave. This phenomenon occurs at the boundary of two medium, where light will normally move from one medium to another.

To prevent light from entering the water, the angle of incidence of the light incident on the water must exceed the critical angle.

A nozzle with a radius of 0.22 cm is attached to a garden hose with a radius of 0.89 cm that is pointed straight up. The flow rate through hose and nozzle is 0.55 L/s.
Randomized Variables
rn = 0.22 cm
rh = 0.94 cm
Q = 0.55
1. Calculate the maximum height to which water could be squirted with the hose if it emerges from the nozzle in m.
2. Calculate the maximum height (in cm) to which water could be squirted with the hose if it emerges with the nozzle removed assuming the same flow rate.

Answers

Answer:

1. 0.2m

1. 66m

Explanation:

See attached file

The expressions of fluid mechanics allows to find the result for the maximum height that the water leaves through the two points are;

1) The maximum height when the water leaves the hose is: Δy = 0.20 m

2) The maximum height of the water leaves the nozzle is: Δy = 68.6m

Given parameters

The flow rate  Q = 0.55 L/s = 0.55 10⁻³ m³ / s Nozzle radius r₁ = 0.22 cm = 0.22 10⁻² m Hose radius r₂ = 0.94 cm = 0.94 10⁻² m

To find

   1. Maximum height of water in hose

  2. Maximum height of water at the nozzle

Fluid mechanics studies the movement of fluids, liquids and gases in different systems, for this it uses two expressions:

The continuity equation. It is an expression of the conservation of mass in fluids.

           A₁v₁ = A₂.v₂

Bernoulli's equation. Establishes the relationship between work and the energy conservation in fluids.

          P₁ + ½ ρ g v₁² + ρ g y₁ = P₂ + ½ ρ g v₂² + ρ g y₂

Where the subscripts 1 and 2 represent two points of interest, P is the pressure, ρ the density, v the velocity, g the acceleration of gravity and y the height.

1, Let's find the exit velocity of the water in the hose.

Let's use subscript 1 for the nozzle and subscript 2 for the hose.

The continuity equation of the flow value that must be constant throughout the system.

      Q = A₁ v₁

      v₁ = [tex]\frac{Q}{A_1 }[/tex]  

The area of ​​a circle is:

     A = π r²

Let's calculate the velocity in the hose.

    A₁ = π (0.94 10⁻²) ²

    A₁ = 2.78 10⁻⁴ m²

    v₁ = [tex]\frac{0.55 \ 10^{-3}}{2.78 \ 10^{-4}}[/tex]

    v₁ = 1.98 m / s

Let's use Bernoulli's equation.

When the water leaves the hose the pressure is atmospheric and when it reaches the highest point it has not changed P1 = P2

      ½ ρ v₁² + ρ g y₁ = ½ ρ v₂² + ρ g v₂

      y₂-y₁ = ½  [tex]\frac{v_i^2 - v_2^2}{g}[/tex]  

At the highest point of the trajectory the velocity must be zero.

     y₂- y₁ = [tex]\frac{v_1^2}{2g}[/tex]

Let's calculate

     y₂-y₁ =  [tex]\frac{1.98^2}{2 \ 9.8}[/tex]  

     Δy = 0.2 m

 

2.  Let's find the exit velocity of the water at the nozzle

          A₁ = π r²

          A₁ = π (0.22 10⁻²) ²

          A₁ = 0.152 10⁻⁴ m / s

With the continuity and flow equation.

           Q = A v

            v₁ = [tex]\frac{Q}{A}[/tex]  

             v₁ = [tex]\frac{0.55 \ 10{-3} }{0.152 \ 10^{-4} }[/tex]  

             v₁ = 36.67 m / s

Using Bernoulli's equation, where the speed of the water at the highest point is zero.

           y₂- y₁ =  [tex]\frac{v^1^2}{g}[/tex]  

Let's calculate.

           Δy =  [tex]\frac{36.67^2 }{2 \ 9.8 }[/tex]  

           Δy = 68.6m

In conclusion using the expressions of fluid mechanics we can find the results the maximum height that the water leaves through the two cases are:

      1) The maximum height when the water leaves the hose is:

          Δy = 0.20 m

      2) The maximum height of the water when it leaves the nozzle is:

          Δy = 68.6 m

Learn more here:  https://brainly.com/question/4629227

A long, thin solenoid has 450 turns per meter and a radius of 1.17 cm. The current in the solenoid is increasing at a uniform rate did. The magnitude of the induced electric field at a point which is near the center of the solenoid and a distance of 3.45 cm from its axis is 8.20×10−6 V/m.
Calculate di/dt
di/dt = _________.

Answers

Answer:

[tex]\frac{di}{dt} = 7.31 \ A/s[/tex]

Explanation:

From the question we are told that  

     The  number of turns is  [tex]N = 450 \ turns[/tex]

      The  radius is  [tex]r = 1.17 \ cm = 0.0117 \ m[/tex]

       The  position from the center consider is  x =  3.45 cm  =  0.0345 m

       The  induced emf is  [tex]e = 8.20 *10^{-6} \ V/m[/tex]

Generally according to Gauss law

        [tex]\int\limits { e } \, dl = \mu_o * N * \frac{di}{dt } * A[/tex]

=>    [tex]e * 2\pi x = \mu_o * N * \frac{d i }{dt } * A[/tex]

Where A is the  cross-sectional area of the solenoid which is mathematically represented as

                [tex]A = \pi r ^2[/tex]

=>      [tex]e * 2\pi x = \mu_o * N * \frac{d i }{dt } * \pi r^2[/tex]

=>       [tex]\frac{di}{dt} = \frac{2e * x }{\mu_o * N * r^2}[/tex]ggl;

Here  [tex]\mu_o[/tex] is the permeability of free space with value

          [tex]\mu_o = 4\pi * 10^{-7} \ N/A^2[/tex]

=>     [tex]\frac{di}{dt} = \frac{2 * 8.20*10^{-6} * 0.0345 }{ 4\pi * 10^{-7} * 450 * (0.0117)^2}[/tex]

=>      [tex]\frac{di}{dt} = 7.31 \ A/s[/tex]

The value of di/dt from the given values of the solenoid electric field is;

di/dt = 7.415 A/s

We are given;

Number of turns; N = 450 per m

Radius; r = 1.17 cm = 0.0117 m

Electric Field; E = 8.2 × 10⁻⁶ V/m

Position of electric field; r' = 3.45 cm = 0.0345 m

According to Gauss's law of electric field;

∫| E*dl | = |-d∅/dt |

Now, ∅ = BA = μ₀niA

where;

n is number of turns

i is current

A is Area

μ₀ = 4π × 10⁻⁷ H/m

Thus;

E(2πr') = (d/dt)(μ₀niA)  (negative sign is gone from the right hand side because we are dealing with magnitude)

Since we are looking for di/dt, then we have;

E(2πr') = (di/dt)(μ₀nA)

Making di/dt the subject of the formula gives;

di/dt = E(2πr')/(μ₀nA)

Plugging in the relevant values gives us;

di/dt = (8.2 × 10⁻⁶ × 2 × π × 0.0345)/(4π × 10⁻⁷ × 450 × π × 0.0117²)

di/dt = 7.415 A/s

Read more at; https://brainly.com/question/14003638

Two buses 'A' and 'B' are moving in the same direction with the velocities 30m/s and 40m/s respectively. Find the relative velocity of the bus 'A' with respect to the bus 'B'. Calculate the relative displacement between them after 4 minutes.:)

Hope who are reading this may have a good life;)

Lots of love from Nepal <3​

Answers

Relative Velocity, aVb:

[tex]{ \bf{ _{A} V_{B} =V_{A} - V_{B} }} \\ _{A} V_{B} = 30 - 40 \\ _{A} V_{B} = - 10 \: {ms}^{ - 1} \\ |_{A} V_{B}| = 10 \: {ms}^{ - 1} [/tex]

Relative displacement:

[tex] = \frac{ |_{A} V_{B}| }{time} \\ \\ = \frac{10}{4} \\ = 2.5 \: metres[/tex]

4. A diver is 20 m underwater and they are startled by a shark. They are tempted to take a big breath of air, drop their gear, and swim to the surface while holding their breath. Explain why this is dangerous g

Answers

Answer:

Explanation:

The air enters their lungs at the same pressure as the water at that depth.

If they hold their breath as they rise to atmospheric pressure, the expanding volume of air (due to decreasing pressure) trapped in their lungs will hyperextend the alveoli in their lungs, likely tearing blood lines and risking death by drowning in their own blood.

A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .Part A. Calcualte the coil's self-inductance.Part B. If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil.Part C. The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf froma to b or from b to a?

Answers

Complete Question

A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .

Part A. Calculate  the coil's self-inductance.

Part B. If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil.

Part C. The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf from a to b or from b to a?

Answer:

Part A  

       [tex]L = 0.000863 \ H[/tex]

Part B  

       [tex]\epsilon = 0.863 \ V[/tex]

Part C

    From terminal a to terminal b

Explanation:

From the question we are told that

      The  number of turns is  [tex]N = 590 \ turns[/tex]

      The cross-sectional area is  [tex]A = 6.20 cm^2 = 6.20 *10^{-4} \ m[/tex]

      The  radius is [tex]r = 5.0 \ cm = 0.05 \ m[/tex]

       

Generally the coils self -inductance is mathematically represented as

              [tex]L = \frac{ \mu_o N^2 A }{2 \pi * r }[/tex]

Where [tex]\mu_o[/tex] is the permeability of  free space with value [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

substituting values

             [tex]L = \frac{ 4\pi * 10^{-7} * 590^2 6.20 *10^{-4} }{2 \pi * 0.05 }[/tex]

             [tex]L = \frac{ 2 * 10^{-7} * 590^2 6.20 *10^{-4} }{ 0.05 }[/tex]

             [tex]L = 0.000863 \ H[/tex]

Considering the Part B

      Initial current is [tex]I_1 = 5.00 \ A[/tex]

      Current at time t is [tex]I_t = 3.0 \ A[/tex]

       The  time taken is  [tex]\Delta t = 3.00 ms = 0.003 \ s[/tex]

The self-induced emf is mathematically evaluated as

          [tex]\epsilon = L * \frac{\Delta I}{ \Delta t }[/tex]          

=>         [tex]\epsilon = L * \frac{ I_1 - I_t }{ \Delta t }[/tex]

substituting values

             [tex]\epsilon = 0.000863 * \frac{ 5- 2 }{ 0.003 }[/tex]  

             [tex]\epsilon = 0.863 \ V[/tex]

The direction of the induced emf is  from a to b because according to Lenz's law the induced emf moves in the same direction as the current

This question involves the concepts of the self-inductance, induced emf, and Lenz's Law

A. The coil's self-inductance is "0.863 mH".

B. The self-induced emf in the coil is "0.58 volts".

C. The direction of the induced emf is "from b to a".

A.

The self-inductance of the coil is given by the following formula:

[tex]L=\frac{\mu_oN^2A}{2\pi r}[/tex]

where,

L = self-inductance = ?

[tex]\mu_o[/tex] = permeability of free space = 4π x 10⁻⁷ N/A²

N = No. of turns = 590

A = Cross-sectional area = 6.2 cm² = 6.2 x 10⁻⁴ m²

r = radius = 5 cm = 0.05 m

Therefore,

[tex]L=\frac{(4\pi\ x\ 10^{-7}\ N/A^2)(590)^2(6.2\ x\ 10^{-4}\ m^2)}{2\pi(0.05\ m)}[/tex]

L = 0.863 x 10⁻³ H = 0.863 mH

B.

The self-induced emf is given by the following formula:

[tex]E=L\frac{\Delta I}{\Delta t}\\\\[/tex]

where,

E = self-induced emf = ?

ΔI = change in current = 2 A

Δt = change in time = 3 ms = 0.003 s

Therefore,

[tex]E=(0.000863\ H)\frac{2\ A}{0.003\ s}[/tex]

E = 0.58 volts

C.

According to Lenz's Law, the direction of the induced emf always opposes the change in flux that causes it. Hence, the direction of the induced emf will be from b to a.

Learn more about Lenz's Law here:

https://brainly.com/question/12876458?referrer=searchResults

A Cannonball is shot at an angle of 35.0 degrees and is in flight for 11.0 seconds before hitting the ground at the same height from which it was shot.
A. What is the magnitude of the inital velocity?B. What was the maximum height reached by the cannonball?C. How far, horizontally, did it travel?

Answers

Answer:

Explanation:

According to Equations of Projectile motion :

[tex]Time\ of\ Flight = \frac{2vsin(x)}{g}[/tex]

vsin(x) = 11 * 9.8 / 2 = 53.9 m/sec

(A) v (Initial velocity) = 11 * 9.8 / 2 * sin(35) = 94.56 m/sec

[tex]Maximum Height = \frac{(vsinx)^{2} }{2g}[/tex]

(B) Maximum Height = 53.9 * 53.9 / 2 * 9.8 = 142.2 m

[tex]Horizontal Range = vcosx * t[/tex]

(C) Horizontal Range = 94.56 * 0.81 * 11 = 842.52 m

The Moon orbits Earth in a nearly circular orbit (mean distance is 378,000 km ). The moon Charon orbits Pluto in a nearly circular orbit as well (mean distance is 19,600 km ).
Earth Moon Pluto Charon
Mass (kg) 5.97 x 10^24 0.07342 x 10^24 0.0146 x 10^24 0.00162 x 10^24
Equatorial radius (km) 6378.1 1738.1 1185 604
Which object exhibits the longest orbital period? Hint: perform order of magnitude analysis.
a. Moon around Earth
b. Charon around Pluto
c. About the same for both

Answers

Answer:

a. Moon around Earth.

Explanation:

Charon orbit takes around 6.4 earth days to complete its orbit. Charon does not rises or sets, it hovers over same spot around the Pluto. The same side of Charon faces the Pluto, this is called Tidal Locking.

The moon orbit takes around 27 days to complete its orbit. The moon has different sides that are faced with sun which creates light or dark face of moon on the earth. Moon has 384,400 km distance from the earth.

The object that should exhibit the longest orbital period is option a. Moon around Earth.

What is Charon's orbit?

Charon's orbit takes around 6.4 earth days to finish its orbit. Charon does not rise or sets, it hovers over similar spot around Pluto. The same side of Charon faces Pluto, this we called Tidal Locking. Here the moon orbit should take approx 27 days to finish its orbit. The moon has various sides that are faced with the sun which developed the light or dark face of the moon on the earth. Also, Moon has 384,400 km distance from the earth.

learn more about orbit here: https://brainly.com/question/25404554

A rod of length L and electrical resistance R moves through a constant uniform magnetic field ; both the magnetic field and the direction of motion are parallel to the rod. The force that must be applied by a person to keep the rod moving with constant velocity is:

Answers

Answer:

don't know what class are you you are using which mobile or laptop

A wire carries current in the plane of this paper toward the top of the page. The wire experiences a ma netic force toward the right edge of the page. The direction of the magnetic field causing this force is:
A. in the plane of the page and toward the left edge
B. in the plane of the page and toward the bottom edge
C. upward out of the page
D. downward into the page

Answers

Answer:

D) True. In this case the thumb goes up the page, the fingers are extended out of the page and the palm points to the left

Explanation:

The magnetic force on a conductor is given by

        F = i L x B

bold letters indicate vectors. We can write this expression in the form of magnitudes

         F = i L B sin θ

The direction of the force can be found by the rule of the right hand, the thumb points in the direction of the current, the fingers extended in the direction of the magnetic field and the palm gives the direction of the force

Let's apply this expression to the case presented.

A) False. In this case the force is out of the page and is in contradiction with the real force

B) False. In this case the force is zero since the displacement of the current and the field would be parallel

C) False. In this case the force is to the left

D) True. In this case the thumb goes up the page, the fingers are extended out of the page and the palm points to the left

find it ...............​

Answers

Answer:

9 N

Explanation:

Treat X and y as a single book with weight 9 N.

Draw a free body diagram of this book combination.  There are two forces: weight force 9 N pulling down, and normal force F pushing up.

Sum of forces in the y direction:

∑F = ma

F − 9 N = 0

F = 9 N

The Bohr model pictures a hydrogen atom in its ground state as a proton and an electron separated by the distance a0 = 0.529 × 10−10 m. The electric potential created by the electron at the position of the proton is

Answers

Answer:

E = -8.23 ​​10⁻¹⁷ N / C

Explanation:

In the Bohr model, the electric potential for the ground state corresponding to the Bohr orbit is

         E = k q₁ q₂ / r²

in this case

q₁ is the charge of the proton and q₂ the charge of the electron

         E = - k e² / a₀²

let's calculate

         E = - 9 10⁹ (1.6 10⁻¹⁹)² / (0.529 10⁻¹⁰)²

         E = -8.23 ​​10⁻¹⁷ N / C

The same heat transfer into identical masses of different substances produces different temperature changes. Calculate the final temperature in degrees Celsius when 1.50 kcal of heat enters 1.50 kg of the following, originally at 15.0°C.(a) water
(b) concrete
(c) steel
(d) mercury

Answers

Answer:

Final temperature Water = 20.99-degree  celsius

Final temperature  Concrete = 24.98  degree celsius

Final temperature  Steel = 50.1 degree  celsius

Final temperature Mercury = 29.26  degree  celsius

Explanation:

Given the mass of each substance = 1.50 kg

Ti = 15

Q = 1.5 kcal = 6276 joule

We have to use the heat capacity of each object so find the heat capacity from the table.

Heat capacity of water = 4186 J/kg degree celsius.

Heat capacity of concrete = 840 J/kg degree celsius.

Heat capacity of steel = 452 J/kg degree celsius.

Heat capacity of mercury = 139 J/kg degree celsius.

Use the below formula to find the final temperature.

[tex]T_f = T_i + \frac{Q}{mc_w} \\[/tex]

[tex]\text{Temperature in the case of water.} \\= 20 + \frac{6276}{1.5 \times 4186 } \\= 20.99 \ degree \ celsius \\\text{Temperature in the case of concrete.} \\= 20 + \frac{6276}{1.5 \times 840 } \\= 24.98 \ degree \ celsius \\\text{Temperature in the case of steel.} \\= 20 + \frac{6276}{1.5 \times 452 } \\= 29.26 \ degree \ celsius \\\text{Temperature in the case of mercury.} \\= 20 + \frac{6276}{1.5 \times 139 } \\= 50.1 \ degree \ celsius \\[/tex]

Explain how surface waves can have characteristics of both longitudinal waves and transverse waves. Please use 3 content related sentences

Answers

Answer: Search Results

Featured snippet from the web

Answer: Surface waves can have characteristics of both longitudinal and transverse waves in the following way; The motion of the surface waves is up and down which is perpendicular to the direction of the wave. This is similar to the motion of transverse waves whereas the the motion of longitudinal.

Explanation:

Surface waves can exhibit characteristics of both longitudinal waves and transverse waves.

Surface waves are a type of mechanical wave that propagate along the interface between two different mediums, such as the ground and air or the surface of water. These waves combine properties of both longitudinal and transverse waves

Similar to longitudinal waves, surface waves involve particles oscillating in the same direction as the wave propagation. This creates compressions and rarefactions, leading to variations in density or pressure. These compressions and rarefactions are characteristic of longitudinal waves.

However, surface waves also exhibit transverse motion. As the wave propagates along the surface, particles move in a perpendicular direction to the wave's motion. This transverse motion causes particles to displace vertically or horizontally, similar to transverse waves.

By combining both longitudinal and transverse characteristics, surface waves possess a complex motion that allows them to travel along the surface while simultaneously causing particles to oscillate both parallel and perpendicular to the direction of wave propagation.

To know more about Surface waves, click here.

https://brainly.com/question/907481

#SPJ2

An inductor is hooked up to an AC voltage source. The voltage source has EMF V0 and frequency f. The current amplitude in the inductor is I0.
Part A
What is the reactance XL of the inductor?
Express your answer in terms of V0 and I0.
Part B
What is the inductance L of the inductor?
Express your answer in terms of V0, f, and I0.

Answers

Answer:

a. The reactance of the inductor is XL = V₀/I₀

b. The inductance of the inductor is L = V₀/2πfI₀

Explanation:

PART A

Since the voltage across the inductor V₀ = I₀XL where V₀ = e.m.f of voltage source, I₀ = current amplitude and XL = reactance of the inductor,

XL = V₀/I₀

So, the reactance of the inductor is XL = V₀/I₀

PART B

The inductance of the inductor is gotten from XL = 2πfL where f = frequency of voltage source and L = inductance of inductor

Since XL = V₀/I₀ = 2πfL

V₀/I₀ = 2πfL

L = V₀/2πfI₀

So the inductance of the inductor is L = V₀/2πfI₀

A) The reactance XL of the inductor :  [tex]\frac{V_{0} }{I_{0} }[/tex]  

B) The Inductance L of the inductor : [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]  

A) Expressing the Reactance of the inductor

Voltage across the Inductor = V₀ = I₀XL   ---- ( 1 )

Where :  V₀ = emf voltage ,  I₀ = current

from equation ( 1 )

∴ XL ( reactance ) = [tex]\frac{V_{0} }{I_{0} }[/tex]  

B ) Expressing the Inductance of the Inductor

Inductance of an inductor is expressed as : XL = 2πfL

from part A

XL = [tex]\frac{V_{0} }{I_{0} }[/tex] = 2πfL

∴ The inductance L of the Inductor expressed in terms of V₀, F and I₀

L = [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]

Hence we can conclude that The reactance XL of the inductor :  [tex]\frac{V_{0} }{I_{0} }[/tex]  and The Inductance L of the inductor : [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]  .

Learn more : https://brainly.com/question/25208405

How would the interference pattern change for this experiment if a. the grating was moved twice as far from the screen and b. the line density of the grating were doubled?

Answers

Answer:

a) the distance between the interference fringes is reduced by half

b) the distance between stripes is doubled

Explanation:

Interference experiments constructive interference is described by the expression

          d sin θ = m λ

let's use trigonometry to find the distance between the interference fringes

              tan θ=  y / L

dodne y is the distance from the central maximum, L the distance from the slit to the observation screen. In general these experiments are carried out at very small angles

            tan θ = sin θ / cos θ = sin θ

we substitute

             sin θ = y / L

             

            d y / L = m  λ

           y = m λ / d L

a) it asks us when the screen doubles its distance

           L ’= 2 L

subtitute in the equation

           y ’= m λ / (d 2L)

           y ’=( m λ / d L) /2

           y ’= y / 2

the distance between the interference fringes is reduced by half

b) the density of the network doubles

      if the density doubles in the same distance there are twice as many slits, so the distance between them is reduced by half

            d ’= d / 2

we substitute

          y ’= m λ (L d / 2)

          y ’= m λ / (L d) 2

          y ’= y 2

the distance between stripes is doubled

Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The drivers step on the brakes and all automobiles are brought to rest.Automobile 1: 500kg, 10m/sAutomobile 2: 2000kg, 5m/sAutomobile 3: 500kg, 20m/sAutomobile 4: 1000kg, 20m/sAutomobile 5: 1000kg, 10m/sAutomobile 6: 4000kg, 5m/sRequired:a. Rank these automobiles based on the magnitude of their momentum before the brakes are applied, from largest to smallest.b. Rank these automobiles based on the magnitude of the impulse needed to stop them, from largest to smallest.c. Rank the automobiles based on the magnitude of the force needed to stop them, from largest to smallest.

Answers

Answer:

A. largest: (4000 kg, 5 m/s; 1000 kg, 20 m/s)

medium: (2000 kg, 5 m/s; 500 kg, 20 m/s; 1000 kg, 10 m/s)

smallest: (500 kg, 10 m/s)

B. largest: (4000 kg, 5 m/s; 1000 kg, 20 m/s)

medium: (2000 kg, 5 m/s; 500 kg, 20 m/s; 1000 kg, 10 m/s)

smallest: (500 kg, 10 m/s)

C. You can't say anything about the forces required until we know about the time frames required for each one to stop. So If they all stopped in the same time interval, then the rankings are the same.

What is the magnitude of the free-fall acceleration at a point that is a distance 2R above the surface of the Earth, where R is the radius of the Earth

Answers

Answer:

g' = g/9 = 1.09 m/s²

Explanation:

The magnitude of free fall acceleration at the surface of earth is given by the following formula:

g = GM/R²   ----- equation 1

where,

g = free fall acceleration

G = Universal Gravitational Constant

M = Mass of Earth

R = Distance between the center of earth and the object

So, in our case,

R = R + 2 R = 3 R

Therefore,

g' = GM/(3R)²

g' = (1/9) GM/R²

using equation 1:

g' = g/9

g' = (9.8 m/s)/9

g' = 1.09 m/s²

Answer:

The magnitude of the free-fall acceleration [tex]g_h = 1.09m/s^2[/tex]

Explanation:

Surface of earth,

[tex]g = \frac{GM}{R^2}\\\\g = 9.8m/s^2[/tex]

free fall acceleration at height h,

[tex]g_h = \frac{GM}{(R+h)^2}[/tex]

where

G = gravitational constant

R = Radius of earth

M = mass of earth

therefore,

[tex]\frac{g_h}{g} = \frac{\frac{GM}{(R+h)^2}}{\frac{GM}{R^2}}\\\\ \frac{g_h}{g} = \frac{R^2}{(R+h)^2}\\\\g_h = g\frac{R^2}{(R+h)^2}[/tex]

Where height h = 2R

[tex]g_h = 9.8\frac{R^2}{(R+2R)^2}\\\\g_h = 9.8\frac{R^2}{(3R)^2}\\\\g_h = 9.8\frac{R^2}{(9R^2}\\\\g_h = 1.09m/s^2[/tex]

For more information, visit

https://brainly.com/question/17162343

Two automobiles are equipped with the same singlefrequency horn. When one is at rest and the other is moving toward the first at 20 m/s , the driver at rest hears a beat frequency of 9.0 Hz.

Requried:
What is the frequency the horns emit?

Answers

Answer: f ≈ 8.5Hz

Explanation: The phenomenon known as Doppler Shift is characterized as a change in frequency when one observer is stationary and the source emitting the frequency is moving or when both observer and source are moving.

For a source moving and a stationary observer, to determine the frequency:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

where:

[tex]f_{0}[/tex] is frequency of observer;

[tex]f_{s}[/tex] is frequency of source;

c is the constant speed of sound c = 340m/s;

[tex]v_{s}[/tex] is velocity of source;

Rearraging for frequency of source:

[tex]f_{0} = f_{s}.\frac{c}{c-v_{s}}[/tex]

[tex]f_{s} = f_{0}.\frac{c-v_{s}}{c}[/tex]

Replacing and calculating:

[tex]f_{s} = 9.(\frac{340-20}{340})[/tex]

[tex]f_{s} = 9.(0.9412)[/tex]

[tex]f_{s} =[/tex] 8.5

Frequency the horns emit is 8.5Hz.

Changing the speed of a synchronous generator changes A) the frequency and amplitude of the output voltage. B) only the frequency of the output voltage. C) only the amplitude of the output voltage. D) only the phase of the output voltage.

Answers

Answer:

A) the frequency and amplitude of the output voltag

Explanation:

Changing the speed of a synchronous generator changes both the output voltage (amplitude of the wave) and frequency as they tend to increase.

Changing the speed regulator will change the engine throttle setting to maintain the speed.

While the power, torque, current, fuel flow rate and torque angle will have decreased.

Unpolarized light is passed through three successive Polaroid filters, each with its transmission axis at 45.0° to the preceding filter. What percentage of light gets through?

Answers

Answer:

The percentage is  [tex]k = 12.5 \%[/tex]

Explanation:

From the question we are told that

    The  axis is is  at  [tex]\theta = 45 ^o[/tex]

Generally the of intensity light emerging from the first polarizer is mathematically represented as

                [tex]I_{1} = \frac{I_o}{ 2}[/tex]

Where  [tex]I_o[/tex] is the intensity of unpolarized light

       Now the light emerging from the second polarizer is mathematically represented as

         [tex]I_2 = I_ 1 * cos ^2(\theta )[/tex]

         [tex]I_2 = \frac{I_o}{2} * cos ^2(45 )[/tex]

        [tex]I_2 = \frac{I_o}{2} * \frac{1}{2} = \frac{I_o}{4}[/tex]

  Now the light emerging from the third  polarizer is mathematically represented as      

       [tex]I_3 = I_ 2 * cos ^2(\theta )[/tex]

       [tex]I_3 = \frac{I_o}{4} * cos ^2(45 )[/tex]

      [tex]I_3 = \frac{I_o}{8}[/tex]

Now the percentage of the intensity of light that emerged with respect to the intensity of  the unpolarized light is

      [tex]k = \frac{\frac{I_o}{8} }{I_o } * 100[/tex]

     [tex]k = 12.5 \%[/tex]

       

The percentage of light that gets through the three successive Polaroid filters is; 12.5%

We are given;

Angle of transmission axis; θ = 45°

Formula for intensity of light from first polarizer is;

I₁ = ¹/₂I₀

Formula for intensity of light from second polarizer is;

I₂ = I₁cos²θ

Formula for intensity of light from third polarizer is;

I₃ = I₂cos²(90 - θ)

Combining the 3 equations;

Put ¹/₂I₀ for I₁ in second formula to get;

I₂ = ¹/₂I₀cos²θ

Put ¹/₂I₀cos²θ for I₂ in third formula to get;

I₃ = ¹/₂I₀cos²θ*cos²(90 - θ)

Plugging in 45° for θ gives;

I₃ = ¹/₂I₀cos²45*cos²(90 - 45)

⇒ I₃ = ¹/₂I₀cos²45*cos²45

⇒ I₃ = ¹/₂I₀cos⁴45

Now, cos 45 in surd form is 1/√2. Thus;

I₃ = ¹/₂I₀(1/√2)⁴

I₃ = ¹/₂I₀(¹/₄)

I₃ = ¹/₈I₀

I₃/I₀ = ¹/₈

I₃/I₀ = 0.125

In percentage form, we have;

I₃/I₀ = 12.5%

Read more about unpolarized light at; https://brainly.com/question/1444040

You simultaneously shine two light beams, each of intensity I0, on an ideal polarizer. One beam is unpolarized, and the other beam is polarized at an angle of exactly 30.0∘ to the polarizing axis of the polarizer. Find the intensity of the light that emerges from the polarizer. Express your answer in term of I0 .

Answers

Answer:

The emerging intensity is equal to 0.75[tex]I_{o}[/tex]

Explanation:

The initial intensity of the light = [tex]I_{o}[/tex]

The angle of polarization β = 30°

We know that the polarized light intensity is related to the initial light intensity by

[tex]I[/tex] = [tex]I_{0} cos^{2}\beta[/tex]

where [tex]I[/tex] is the emerging polarized light intensity

inserting values gives

[tex]I[/tex] = [tex]I_{0} cos^{2}[/tex] 30°

[tex]cos^{2}[/tex] 30° = [tex](cos 30)^{2}[/tex] = [tex](\frac{\sqrt{3} }{2} )^{2}[/tex] = 0.75

[tex]I[/tex] = 0.75[tex]I_{o}[/tex]

What is the density of the unknown fluid in Figure below? ρwater = 1000 kgm−3

Answers

Answer:

2500 kg/m³

Explanation:

P = P

ρgh = ρgh

ρh = ρh

(1000 kg/m³) (8.9 cm) = ρ (3.5 cm)

ρ ≈ 2500 kg/m³

The Curiosity rover now on Mars analyzed rocks and found magnesium to have the following isotopic composition.
79.70% Mg-24 (23.9872 amu), 10.13% Mg-25 (24.9886 amu), and 10.17% Mg-26 (25.9846 amu).
A. How many neutrons are in Mg-25?
B. What is the average atomic mass of magnesium in these rocks?
C. Is the magnesium composition on Mars the same as that on Earth? Explain.

Answers

Answer:

A.   number of neutrons of Magnesium Mg = 13

B.   The average mass of Mg = 22.29 amu

C.   the magnesium composition on Mars is not the same as that on Earth.

Explanation:

Isotopes are atoms with the same atomic number but different mass number. This is due to the difference in mass of the neutrons.

The atomic number of Magnesium Mg = 12

The atomic number of an element is the number of protons present in the atomic nucleus of the element

i.e Atomic number = number of protons = 12

The mass number of an element is the sum of the protons and neutrons in the atomic nucleus of the element.

Mass number = number of protons + number of neutrons

Given that the mass number of Mg = 25

Then;

25 = 12 + number of neutrons

25 - 12 = number of neutrons

13 = number of neutrons

number of neutrons of Magnesium Mg = 13

B. What is the average atomic mass of magnesium in these rocks?

The average atomic mass of an element which exhibit isotopy is the average mass of its various isotopes as they occur naturally in any quantity of the element.

Therefore the average atomic mass of magnesium can be calculated as:

= [tex]\mathtt{\dfrac{(23.9872 \times 79.70) + ( 24.9886 \times 10.13) + (25.9846 \times 10.17) }{79.7 + 10.13 +10.17}}[/tex]

= [tex]\mathtt{\dfrac{(1911.77984) + ( 53.134518) + (264.263382) }{100}}[/tex]

= [tex]\mathtt{\dfrac{2229.17774 }{100}}[/tex]

The average mass of Mg = 22.29 amu

C. Is the magnesium composition on Mars the same as that on Earth? Explain.

The average atomic weight of magnesium on Earth is said to be 24.305 amu while that of Mars is 22.29 amu.

There difference in the average atomic weight result into difference in their composition. Therefore,the magnesium composition on Mars is not the same as that on Earth.


Somebody please help it’s urgent!!!!

In the tug of war game, none of the teams won. What can you conclude about the forces of the two teams ? Write all the evidence to support your answer.

Answers

Answer:

Explanation:

We can conclude that the forces of the two teams are equal and opposite and hence they cancel each other. Therefore none of the teams won as the rope did not move.

hope this helps

plz mark as brainliest!!!!!!!

Other Questions
Urgent!!! Help, please The largest third party with over 75,000 followers? What is 12x-10y=-19 in slope intercept form? Calculate the molar solubility of CaF2 at 25C in a solution that is 0.010 M in Ca(NO3)2. The Ksp for CaF2 is 3.9 x 10-11. 2(2x-5y)(3x+4y)-6(2x-5y)(x-y) factorise by taking out the common factors Observation: The bee's wings are moving very fast.The bee's wings are much smaller than its body.Which question is based on these observations?A. Do bees fly faster before or after feeding?B. How are bees affected by weather changes?O C. Do bees prefer warm or cold climates?O D. At what time of day do bees eat? Assuming that the loss of ability to recall learned material is a first-order process with a halflife of 35 days. Compute the number of days required to forget 90% of the material that you have learned today. Report to 1 decimal place. PLEASE HELP WILL GIVE BRAINLIEST!!!! Porfavor, necesito ayuda con estos ejercicios. Which expressions are equivalent to 777777 choose two answers: the scientific name of the great egret has recently been changed from Casmerodius albus to Ardea alba. What is a possible reason for the reclassification of egrets?A) Allopatric speciationB) Discovery of a different ancestorC) A change in the mating behaviorsD) A change in their habitat and geological range The sum of 6 even integers is 130 what is the 2nd number in the sequence Question 14 of 20Imagine that you plan to write a procedural document. What question shouldyou ask yourself to ensure that you address your audience correctly?A. What type of style formal or informal - will my readers bestrespond to?B. What research should I do in order to understand my topic better?C. What type of media should I use to illustrate my topic?D. Do I know anyone who has a lot of experience with this topic?SUBMIT Myra wants to practice the piano for at least 22 minutes each day. Which of the following inequalities represents the number of minutes Myra will practice piano? HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Q.11. What is the height of the tabletennis net? * given the vector with a manitude of 9m at an angle a of -80 degrees, decompose this vector into two vector components oarallel to the x axis with a slope of What are the coordinates of the point (2,-4) under the dilation D-2?A) (8,-4)B) (4,-8)C) (-8,4)D) (-4,8) What is the value of the expression below when x = 5 and y = 2?X + 6y What did the framers believe was the fundamental purpose of government