How does a negative ion differ from an uncharged atom of the same
element?
O A. The ion has a greater number of protons.
B. The ion has fewer protons.
O C. The ion has a greater number of electrons.
O D. The ion has fewer neutrons.​

Answers

Answer 1

Answer:

C if it is a negitive ion it has more electrons because protons determine what element it is


Related Questions

The temperature of the hot spots caused by the impact of transferred matter onto the surface of a pulsar can be 108 K. What is the peak wavelength in the blackbody spectrum of such a spot, and in what range of the electromagnetic spectrum does it occur

Answers

Given that,

Temperature = 10⁸ K

We need to calculate the peak wavelength in the blackbody spectrum

Using formula of peak wavelength

[tex]peak\ wavelength = \dfrac{2.898\times10^{-3}}{T}[/tex]

Where, T= temperature

Put the value into the formula

[tex]peak\ wavelength = \dfrac{2.898\times10^{-3}}{10^{8}}[/tex]

[tex]peak\ wavelength = 2.90\times10^{-11}\ m[/tex]

[tex]peak\ wavelength = 290\ nm[/tex]

This range of wavelength is ultraviolet.

Hence, The peak wavelength in the blackbody spectrum is 290 nm and the range of wavelength is ultraviolet electromagnetic spectrum .

Consider a bus traveling to the west (negative x direction) that begins to slow down as it approaches a traffic light. Which statement concerning its acceleration in the x direction is correct

Answers

Complete question is;

Consider a bus traveling to the west (-x direction) begins to slow down as it approaches a traffic light. Which statement concerning its acceleration in the x direction is correct

a) The bus is decelerating and its acceleration is positive.

b) The bus is decelerating, and its acceleration is negative.

c) The acceleration is zero.

d) A statement cannot be made using the information given.

Answer:

Option A - bus is decelerating and acceleration is positive.

Explanation:

We are told that the bus is travelling in (negative x direction) and begins to slow down. Since the bus is slowing down, it means that the bus is undergoing a negative acceleration which is called deceleration.

Thus, the bus is decelerating.

Since it is moving in the negative x-axis, it means acceleration is now; -(-a) which gives +a.

Thus, bus is decelerating and acceleration is positive.

What type of tectonic plate boundary exists along the edge of the North American plate near the coast of Northern California, Oregon, and Washington?
A reverse fault, like the Cascadia subduction zone off the coast of Oregon and Northern California (north of Mendocino California), has relatively deep earthquakes—like the 1964 Alaska earthquake and the 2004 Sumatra earthquake that caused the Boxing Day Tsunami.
True
False
Megathrust earthquakes can be strongest in magnitude—stronger than a San Andreas earthquake like 1906

Answers

Answer:

-transform plate boundary

- false

Two narrow slits are illuminated by a laser with a wavelength of 593 nm. The interference pattern on a screen located x = 4.80 m away shows that the fourth-order bright fringe is located y = 8.20 cm away from the central bright fringe. Calculate the distance between the two slits.

Answers

Answer:

The distance is  [tex]d = 1.39 *10^{-4} \ m[/tex]

Explanation:

From the question we are told that

   The wavelength is  [tex]\lambda = 593 \ nm = 593 *10^{-9} \ m[/tex]

    The distance of the screen is   x  =  4.80 m

    The  location of the fourth order bright fringe is  y  =  8.20 cm = 0.082 m

    The order of the fringe is  n  =  4

   

Generally the position of a fringe with respect to the central fringe is mathematically represented as

           [tex]y = \frac{ n * x * \lambda }{d}[/tex]

Where d is the distance between the slits, so making d the subject

          [tex]d = \frac{\lambda * x * n }{ y }[/tex]

substituting values

          [tex]d = \frac{ 593 *10^{-9} * 4.80 * 4 }{ 0.082 }[/tex]

           [tex]d = 1.39 *10^{-4} \ m[/tex]

What particles in an atom can increase and decrease in number without changing the identity of the elements

Answers

Answer:

The number of neutrons or electrons in an atom can change without changing the identity of the element.

1.2miles=__________km

Answers

Answer:

1.931 kilometres is the answer of 1.2 miles

Answer and Explanation:

1 mile = 1.609 km

Set up a fraction to cancel the miles to get the kilometers.

[tex]\frac{1.2mi}{?km} *\frac{1.609}{1mi} = 1.9308km[/tex] <- This is the answer.

#teamtrees #PAW (Plant And Water)

What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?

Answers

Answer:

[tex]I=2.71\times 10^{-5}\ A[/tex]

Explanation:

A 6.0-cm-diameter parallel-plate capacitor has a 0.46 mm gap.  

What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?

Let given is,

The diameter of a parallel plate capacitor is 6 cm or 0.06 m

Separation between plates, d = 0.046 mm

The potential difference across the capacitor is increasing at 500,000 V/s

We need to find the displacement current in the capacitor. Capacitance for parallel plate capacitor is given by :

[tex]C=\dfrac{A\epsilon_o}{d}\\\\C=\dfrac{\pi r^2\epsilon_o}{d}[/tex], r is radius

Let I is the displacement current. It is given by :

[tex]I=C\dfrac{dV}{dt}[/tex]

Here, [tex]\dfrac{dV}{dt}[/tex] is rate of increasing potential difference

So

[tex]I=\dfrac{\pi r^2\epsilon_o}{d}\times \dfrac{dV}{dt}\\\\I=\dfrac{\pi (0.03)^2\times 8.85\times 10^{-12}}{0.46\times 10^{-3}}\times 500000\\\\I=2.71\times 10^{-5}\ A[/tex]

So, the value of displacement current is [tex]2.71\times 10^{-5}\ A[/tex].

A golfer hits a 42 g ball, which comes down on a tree root and bounces straight up with an initial speed of 15.6 m/s. Determine the height the ball will rise after the bounce. Show all your work.

Answers

Answer:

12.2 m

Explanation:

Given:

v₀ = 15.6 m/s

v = 0 m/s

a = -10 m/s²

Find: Δy

v² = v₀² + 2aΔy

(0 m/s)² = (15.6 m/s)² + 2 (-10 m/s²) Δy

Δy = 12.2 m

[tex] \LARGE{ \boxed{ \rm{ \green{Answer:}}}}[/tex]

Given,

The initial speed is 15.6 m/s The mass of the ball is 42g = 0.042kg

Finding the initial kinetic energy,

[tex]\large{ \boxed{ \rm{K.E. = \frac{1}{2}m {v}^{2}}}}[/tex]

⇛ KE = (1/2)mv²

⇛ KE = (1/2)(0.042)(15.6)²

⇛ KE = 5.11 J

|| ⚡By conservation of energy, the potential energy at the highest point will also be 5.11 J, since there is no kinetic energy at the highest point because the ball is not moving (we neglect energy lost due to air resistance, heat, sound, etc.) ⚡||

So, we have:

[tex] \large{ \boxed{ \rm{P.E. = mgh}}}[/tex]

⇛ h = PE/(mg)

⇛ h = 5.11 J /(0.042 × 9.8)

⇛ h = 12.41 m

✏The ball will rise upto a height of 12.41 m

━━━━━━━━━━━━━━━━━━━━

A vertical spring stretches 3.8 cm when a 13-g object is hung from it. The object is replaced with a block of mass 20 g that oscillates in simple harmonic motion. Calculate the period of motion.

Answers

Answer:

The period of motion is 0.5 second.

Explanation:

Given;

extension of the spring, x = 3.8 cm = 0.038 m

mass of the object, m = 13 g = 0.013 kg

Determine the force constant of the spring, k;

F = kx

k = F / x

k = mg / x

k = (0.013 x 9.8) / 0.038

k = 3.353 N/m

When the object is replaced with a block of mass 20 g, the period of motion is calculated as;

[tex]T = 2\pi\sqrt{\frac{m}{k} } \\\\T = 2\pi\sqrt{\frac{0.02}{3.353} } \\\\T = 0.5 \ second[/tex]

Therefore, the period of motion is 0.5 second.

What is not one of the main uses of springs?
A. Car suspension
B. Bike suspension
C. The seasons
D. Clock making

Answers

Hi! I believe the answer is C. or The seasons because all the other options use springs when making cars, bikes, and clocks. I hope this helped. Goodluck :)

Copper Pot A copper pot with a mass of 2 kg is sitting at room temperature (20°C). If 200 g of boiling water (100°C) are put in the pot, after a few minutes the water and the pot come to the same temperature. What temperature is this in °C?

Answers

Answer:

The final temperature is 61.65 °C

Explanation:

mass of copper pot [tex]m_{c}[/tex] = 2 kg

temperature of copper pot [tex]T_{c}[/tex] = 20 °C  (the pot will be in thermal equilibrium with the room)

specific heat capacity of copper [tex]C_{c}[/tex]= 385 J/kg-°C

The heat content of the copper pot = [tex]m_{c}[/tex][tex]C_{c}[/tex][tex]T_{c}[/tex] = 2 x 385 x 20 = 15400 J

mass of boiling water [tex]m_{w}[/tex] = 200 g = 0.2 kg

temperature of boiling water [tex]T_{w}[/tex] = 100 °C

specific heat capacity of water [tex]C_{w}[/tex] = 4182 J/kg-°C

The heat content of the water = [tex]m_{w}[/tex][tex]C_{w}[/tex][tex]T_{w}[/tex] = 0.2 x 4182 x 100 = 83640 J

The total heat content of the water and copper mix [tex]H_{T}[/tex] = 15400 + 83640 = 99040 J

This same heat is evenly distributed between the water and copper mass to achieve thermal equilibrium, therefore we use the equation

[tex]H_{T}[/tex] =   [tex]m_{c}[/tex][tex]C_{c}[/tex][tex]T_{f}[/tex] + [tex]m_{w}[/tex][tex]C_{w}[/tex]

where [tex]T_{f}[/tex] is the final temperature of the water and the copper

substituting values, we have

99040 = (2 x 385 x [tex]T_{f}[/tex]) + (0.2 x 4182 x

99040 = 770[tex]T_{f}[/tex] + 836.4

99040 = 1606.4[tex]T_{f}[/tex]

[tex]T_{f}[/tex] = 99040/1606.4 = 61.65 °C

A pair of narrow, parallel slits separated by 0.230 mm is illuminated by green light (λ = 546.1 nm). The interference pattern is observed on a screen 1.50 m away from the plane of the parallel slits.
A) Calculate the distance from the central maximum to the first bright region on either side of the central maximum.
B) Calculate the distance between the first and second dark bands in the interference pattern.

Answers

Answer:

A) y = 3.56 mm

B) y = 3.56 mm

Explanation:

A) The distance from the central maximum to the first bright region can be found using Young's double-slit equation:

[tex] y = \frac{m\lambda L}{d} [/tex]

Where:

λ: is the wavelength = 546.1 nm

m: is first bright region = 1

L: is the distance between the screen and the plane of the parallel slits = 1.50 m

d: is the separation between the slits = 0.230 mm

[tex] y = \frac{m\lambda L}{d} = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]  

B) The distance between the first and second dark bands is:

[tex] \Delta y = \frac{\Delta m*\lambda L}{d} [/tex]

Where:

[tex] \Delta m = m_{2} - m_{1} = 2 - 1 = 1 [/tex]

[tex] \Delta y = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]      

I hope it helps you!

Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?1. Increasing the wavelength of the laser.2. Increasing the distance to the screen.3. Increasing the frequency of the laser.4. Increasing the number of lines per length.

Answers

Answer:

Increase in frequency of the laser

Explanation:

Because An increase in frequency will result in more lines per centimeter and a smaller distance between each consecutive line. And a decrease in distance between each gratin

If the rods with diameters and lengths listed below are made of the same material, which will undergo the largest percentage length change given the same applied force along its length?a. d, 3L b. 3d, L c. 2d, 2L d. 4d, L

Answers

Answer:

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

Explanation:

For this exercise we are asked to change the length of the bar by the action of a force applied along its length, in this case we focus on the expression of longitudinal elasticity

               F / A = Y ΔL/L

where F / A is the force per unit length, ΔL / L is the fraction of the change in length, and Y is Young's modulus.

In this case the bars are made of the same material by which Young's modulus is the same for all

              ΔL / L = (F / A) / Y

the area of ​​the bar is the area of ​​a circle

               A = π r² = π d² / 4

               A = π / 4 d²

we substitute

              ΔL / L = (F / Y) 4 /πd²

changing length

               ΔL = (F / Y 4 /π) L / d²

The amount between paracentesis are all constant in this exercise, let's look for the longitudinal change

a) values ​​given d and 3L

               ΔL = cte 3L / d²

               ΔL = cte L /d²  3

To find the percentage, we must divide the change in magnitude by its value and multiply by 100.

                ΔL/L % = [(F /Y  4/π 1/d²) 3L ] / 3L 100

                ΔL/L  % = cte 100%

 

b) 3d and L value, we repeat the same process as in part a

               ΔL = cte L / 9d²

               ΔL = cte L / d² 1/9

               ΔL / L% = cte 100/9

               ΔL / L% = cte 11%

   

c) 2d and 2L value

               ΔL = (cte L / d ½ )/ 2L

               ΔL/L% = cte 100/4

               ΔL/L% = cte 25%

d) value 4d and L

               ΔL = cte L / d² 1/16

                ΔL/L % = cte 100/16

                ΔL/L % = cte 6.25%

   

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

An electron is accelerated from rest through a potential difference. After acceleration the electron has a de Broglie wavelength of 880 nm. What is the potential difference though which this electron was accelerated

Answers

Answer:

3x10⁴v

Explanation:

Using

Wavelength= h/ √(2m.Ke)

880nm = 6.6E-34/√ 2.9.1E-31 x me

Ke= 6.6E-34/880nm x 18.2E -31.

5.6E-27/18.2E-31

= 3 x 10⁴ Volts

A wire is carrying current vertically downward. What is the direction of the force due to Earth's magnetic field on the wire?

Answers

Answer:

The direction of the force will be towards the east

Explanation:

From the question we are told that  

    The direction of the  downward

Generally according to Fleming's right-hand rule(

          Thumb -  direction of force

           Middle finger -  direction of current

           Index finger -  direction of the magnetic field

) and the fact that the earth magnetic field acts  from south to north with respect to the four cardinal points then the direction of the  force will be toward the east with respect to the four cardinal point on the earth

How do you measure potential and kinetic energy?

Answers

Answer:

potential energy is a stored energy or energy of position (gravitational).

Kinetic energy is a energy of motion.

Explanation:

in the formula K is for the kinetic and the P stand for the potential.

A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can be produced using all three resistors? (b) What is the minimum resistance that can be produced using all three resistors? (c) How would you connect these three resistors to obtain a resistance of 10.0 Ω? (d) How would you connect these three resistors to obtain a resistance of 8.00 Ω?

Answers

Answer:a) 4+8+24=36

B) 1/4+1/8+1/24=10

C) yu will connect them in parallel connection.

D) you will connect two in parallel then the remaining one in series to the ons connected in parallel.

Explanation:

(a)The maximum resistance that can be produced using all three resistors will be 36 ohms.

(b)The minimum resistance that can be produced using all three resistors will be 10 ohms.

(c)The three resistors to obtain a resistance of 10.0 Ω will be in the parallel connection.

(d) You connect these three resistors to obtain a resistance of 8.00 Ω will be in parallel. Two will be linked in parallel, and the last one will be connected in series to the two that are connected in parallel.

What is resistance?

Resistance is a type of opposition force due to which the flow of current is reduced in the material or wire. Resistance is the enemy of the flow of current.

The maximum resistance that can be produced using all three resistors is obtained by adding all the given resistance;

[tex]\rm R_{max}=(4 +8+24 )\ ohms \\\\ R_{max}=36 \ ohms[/tex]

The minimum resistance that can be produced using all three resistors is obtained when connected in the parallel.

[tex]\rm R_{min}=\frac{1}{4} +\frac{1}{8} +\frac{1}{24} \\\\ R_{min}=10 \ ohm[/tex]

(c)The three resistors to obtain a resistance of 10.0 Ω will be in the parallel connection.

(d) You connect these three resistors to obtain a resistance of 8.00 Ω will be in parallel. Two will be linked in parallel, and the last one will be connected in series to the two that are connected in parallel.

Hence,the maximum resistance that can be produced using all three resistors will be 36 ohms.

To learn more about the resistance, refer to the link;

https://brainly.com/question/20708652

#SPJ2

A solid block is attached to a spring scale. When the block is suspended in air, the scale reads 21.2 N; when it is completely immersed in water, the scale reads 18. 2 N. What are the volume and density of the block?

Answers

Answer:

7066kg/m³

Explanation:

The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:

Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)

= 7066kg/m³

Explanation:

Answer:

The volume of the block is 306 cm³

The density of the block is 7.07 g/cm³

Explanation:

Given;

weight of block in air, [tex]W_a[/tex] = 21.2 N

Weight of block in water, [tex]W_w[/tex] = 18.2 N

Mass of the block in air;

[tex]W_a = mg[/tex]

21.2 = m x 9.8

m = 21.2 / 9.8

m = 2.163 kg

mass of the block in water;

[tex]W_w = mg[/tex]

18.2 = m x 9.8

m = 18.2 / 9.8

m = 1.857 kg

Apply Archimedes principle

Mass of object in air  - mass of object in water = density of water   x  volume                  of object

2.163 kg - 1.857 kg = 1000 kg/m³ x Volume of block

0.306 kg = 1000 kg/m³ x Volume of block

Volume of the block = [tex]\frac{0.306 \ kg}{1000 \ kg/m^3}[/tex]

Volume of the block = 3.06 x 10⁻⁴ m³

Volume of the block = 306 cm³

Determine the density of the block

[tex]Density = \frac{mass}{volume} \\\\Density =\frac{2163 \ g}{306 \ cm^3} \\\\Density = 7.07 \ g/cm^3[/tex]

You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
most likely final temperature of the mixture?
O A. 80°C
OB. 10-C
OC. 20°C
O D. 60°C

Answers

Answer:

Option (c) : 20°C

Explanation:

[tex]t(final) = \frac{w1 \times t1 + w2 \times t2}{w1 + w2} [/tex]

T(final) = 500* 10 + 100*70/600 = 20°C

A doctor counts 68 heartbeats in 1.0 minute. What are the corresponding period and frequency of the heart rhythm

Answers

Answer:

[tex]f=1.13s^{-1}=1.13Hz[/tex]

Explanation:

Hello,

In this case, a frequency stands for a rate in which some action is done per unit of time. In this case, for the heartbeat, since 68 actions (heartbeats) occur in 1.0, the frequency turns out:

[tex]f=\frac{68}{1.0min}=68min^{-1}[/tex]

Or as most commonly used in Hz ([tex]s^{-1}[/tex]):

[tex]f=68\frac{1}{min} *\frac{1min}{60s}=1.13s^{-1}=1.13Hz[/tex]

Best regards.

Select the correct answer. Which of Newton's laws explains why your hands get red when you press them hard against a wall? A. Newton's law of gravity B. Newton's first law of motion C. Newton's second law of motion D. Newton's third law of motion

Answers

Answer:

D newton third law

Explanation:

good luck

iven a 36.0 V battery and 14.0 Ω and 84.0 Ω resistors, find the current (in A) and power (in W) for each when connected in series.

Answers

Answer:

0.367A = Current of both resistors

For resistor 1: 1.89W; For resistor 2: 11.3W

Explanation:

When the resistors are connected in series, the equivalent resistance is the sum of both resistors, that is:

R = 14.0Ω + 84.0Ω = 98.0Ω

Using Ohm's law, we can find the current of the circuit (Is the same for both resistors):

V = RI

V / R = I

36.0V / 98.0Ω = I

0.367A = Current of both resistors

Power is defined as:

P = I²*R

For resistor 1:

P = 0.367A²*14.0Ω = 1.89W

For resistor 1:

P = 0.367A²*84.0Ω = 11.3W

A boat is able to move at 7.6 m/s in still water. If the boat is placed on the south shore of a river (water current of 3.4 m/s [SE]), and the captain wants to head straight across to the north shore:

a) In what direction should the captain point the boat?
b) Calculate the time it will take to cross (the river is 212.0 m from the south to the north shore).

Answers

Answer:

I don't get it rewrite please

a baseball is given an initial velocity with magnitude v at the angle beta above the surface of an incline which in turn inclined at angle teta above horizontal calculate the distance measured along incline from the launch point to where the baseball strike the incline


Answers

Explanation:

The maximum height of an object, given the initial launch angle and initial velocity is found with:h=v2isin2θi2g h = v i 2 sin 2 ⁡ θ i 2 g .

an aluminum atom has an atomic number of 13 and a mass number of 27,how many
a)protons
b) electrons

pls write the formula too ​

Answers

Element is

[tex]\boxed{\sf {}^{27}Al_{13}}[/tex]

Atomic number=13Mass number=27

[tex]\\ \sf\longmapsto No\:of\:Protons=Atomic \:Number=13[/tex]

And

[tex]\\ \sf\longmapsto No\:of\:Neutrons=Mass\:number-Atomic\:Number[/tex]

[tex]\\ \sf\longmapsto No\:of\:Neutrons=27-13[/tex]

[tex]\\ \sf\longmapsto No\:of\:Neutrons=14[/tex]

And

[tex]\\ \sf\longmapsto No\:of\:electrons=No\:of\:Protons=13[/tex]

Please help!
Much appreciated!​

Answers

Answer:

Rp = 3.04×10² Ω.

Explanation:

From the question given:

1/Rp = 1/4.5×10² Ω + 1/ 9.4×10² Ω

Rp =?

We can obtain the value of Rp as follow:

1/Rp = 1/4.5×10² + 1/ 9.4×10²

Find the least common multiple (lcm) of 4.5×10² and 9.4×10².

The result is 4.5×10² × 9.4×10²

Next, divide the result of the lcm by each denominator and multiply the result obtained with the numerator as shown below:

1/Rp = (9.4×10² + 4.5×10²) /(4.5×10²) (9.4×10²)

1/Rp = 13.9×10²/4.23×10⁵

Cross multiply

Rp × 13.9×10² = 4.23×10⁵

Divide both side by 13.9×10²

Rp = 4.23×10⁵ / 13.9×10²

Rp = 3.04×10² Ω.

Expectant mothers many times see their unborn child for the first time during an ultrasonic examination. In ultrasonic imaging, the blood flow and heartbeat of the child can be measured using an echolocation technique similar to that used by bats. For the purposes of these questions, please use 1500 m/s as the speed of sound in tissue. I need help with part B and C
To clearly see an image, the wavelength used must be at most 1/4 of the size of the object that is to be imaged. What frequency is needed to image a fetus at 8 weeks of gestation that is 1.6 cm long?
A. 380 kHz
B. 3.8 kHz
C. 85 kHz
D. 3.8 MHz

Answers

Answer:

380 kHz

Explanation:

The speed of sound is taken as 1500 m/s

The length of the fetus is 1.6 cm long

The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.

For this 1.6 cm baby, the wavelength must not exceed

λ = [tex]\frac{1}{4}[/tex] of 1.6 cm = [tex]\frac{1}{4}[/tex] x 1.6 cm = 0.4 cm =

0.4 cm = 0.004 m   this is the wavelength of the required ultrasonic sound.

we know that

v = λf

where v is the speed of a wave

λ is the wavelength of the wave

f is the frequency of the wave

f = v/λ

substituting values, we have

f = 1500/0.004 = 375000 Hz

==> 375000/1000 = 375 kHz ≅ 380 kHz

A loop of wire in the shape of a rectangle rotates with a frequency of 143 rotation per minute in an applied magnetic field of magnitude 2 T. Assume the magnetic field is uniform. The area of the loop is A = 2 cm2 and the total resistance in the circuit is 7 Ω.
1. Find the maximum induced emf.
e m fmax =
2. Find the maximum current through the bulb.
Imax

Answers

Answer:

1. e m fmax = 0.00598 Volt

2. Imax = 0.000854 Amp

Explanation:

1. Find the maximum induced emf.

e m fmax =

Given that e m fmax = N*A*B*w

N = 1

A = 2 cm^2 = 0.0002 m^2

f = 143 rotation per minute = 143/min

f = (143/min) * (1 min/60 sec) = 2.38/sec

w = 2Πf = 2 * Π * 2.38 = 14.95 rad/sec

B = 2T

e m fmax = N*A*B*w

e m fmax = 1 * 0.0002 * 2 * 14.95

e m fmax = 0.00598 Volt.

2. Find the maximum current through the bulb.

Imax = e m fmax / R

Where R is the total resistance in the circuit is 7 Ω.

Imax = 0.00598/7 = 0.000854 Amp.

Imax = 0.000854 Amp

1) The maximum induced EMF in the loop of wire is; EMF_max = 9.52 × 10^(-4) V

2) The maximum current through the bulb is;

I_max = 1.36 × 10^(-4) A

We are given;

Number of turns; N = 1

Magnitude of magnetic field; B = 2 T

Area; A = 2 cm² = 0.0002 m²

Angular frequency; ω = 143 /min = 2.38 /s

Resistance; R = 7 Ω.

1) Formula for maximum induced EMF is;

EMF_max = NAωB

Plugging in the relevant values gives;

EMF_max = 1 × 0.0002 × 2.38 × 2

EMF_max = 9.52 × 10^(-4) V

2) Formula for maximum current through the bulb is given as;

I_max = EMF_max/R

Plugging in the relevant values;

I_max = (9.52 × 10^(-4))/7

I_max = 1.36 × 10^(-4) A

Read more at; https://brainly.com/question/24487261

What is the maximum wavelength of incident light for which photoelectrons will be released from gallium

Answers

Answer:

292 nm

Explanation:

The work function of gallium ∅ = 94.25 eV = 6.81 x 10^-19 J

at maximum wavelength, the energy of the photons is equal to its work function

Energy of the electron = hf

but hf = hc/λ

where h is the planck's constant = 6.63 × 10-34 m^2 kg/s

c is the speed of light = 3 x 10^8 m/s

λ is the wavelength that this occurs, which is the maximum wavelength

Equating, we have

hc/λ =  ∅

substituting, we have

(6.63 × 10-34 x 3 x 10^8)/λ = 6.81 x 10^-19

(1.989 x 10^-25)/(6.81 x 10^-19) = λ

λ = 292.07 x 10^-9 = 292 nm

Other Questions
what member of state have to do What benefits did these clauses give France and the allies territory loss Find some examples of discrimination in the book "The catcher in the rye" and state the text How do I do this? All of em hello!! Whats Antibiotic The charger for your electronic devices is a transformer. Suppose a 60 Hz outlet voltage of 120 V needs to be reduced to a device voltage of 3.0 V. The side of the transformer attached to the electronic device has 45 turns of wire. How many turns are on the side that plugs into the outlet? Simplify and find the perimeter of the triangle 17. Thirteen percent of a 12,000 acre forest is being logged. How many acres will be logged? Assume that the following are independent situations recently reported in the Wall Street Journal. a. General Electric (GE) 7% bonds, maturing January 28, 2018, were issued at 110.30. b. Boeing 7% bonds, maturing September 24, 2032, were issued at 98.15.Required:a. Were GE and Boeing bonds issued at a premium or a discount?b. The General Electric bonds were issued at a___________ and the Boeing bonds were issued at a__________ 15 POINTS IF U ANSWER NOW!!!!! Which non-income factor for a potential job promotion would influence a person whose mother needs frequent medical attention? A.) Location (im pretty sure its not A) B.) Personal satisfaction C.) Independence D.)Family used: 2. What, according to kunwar singh, are the two things one needs in order to walk fearlessly in the jungle? Please I need help will get max points as many as 2x+3y=19 // 6x+2y=22 Prince Burgers and FriesPrince Burgers and Fries restaurant has created a new sauce that allegedly will reduce the production of body gas associated with eating its gourmet burgers. The manager at the restaurant, Sheila E., recruits 100 customers with a history of gas problems. She has 50 of them (Group A) eat gourmet burgers with the new sauce. The other 50 (Group B) eat gourmet burgers with sauce that looks just like the new sauce but is really just a mixture of mayonnaise and food coloring. Both groups were told that they were getting the sauce that would reduce gas production. Two hours after eating the gourmet burgers, 30 customers in Group A reported having fewer gas problems and 8 customers in Group B reported having fewer gas problems. A. Which people are in the control group? B. What is the independent variable? C. What is the dependent variable? D. What should the restaurants conclusion be? 3,3-dibromo-4-methylhex-1-yne on essay in write about the role of Agriculture in Country's national economy. Please someone help me for solve this Question. A story dealing with a character fighting to stay alive while lost at sea would be an example of which type of conflict? Which of these types of communication is generally most effective at educating the electorate about candidates In "The Treasure of Lemon Brown" what did Greg do as he entered his house, knowing that he was about to receive alecture?A. defend himselfB. smileC. slam the doorD. stomp up the stairs If the tank is designed to withstand a pressure of 5 MPaMPa, determine the required minimum wall thickness to the nearest millimeter using the maximum-shear-stress theory. Apply a factor of safety of 1.5 against yielding.